Real-timeSoft Shadavs in a GameEngine

KasperFauerby(kasper@peroxide.dk)
CarsterKjeer (carsten@peroxide.dk)

14thDecembef003

Abstract

In this thesiswe explore the possibilitiesof using variousreal-timeshadov
techniguesn a 3d gameengine. We describea techniqueknown asthe stencil
shadev algorithmandshow how it canbe extendedo producesoft shadevs from
volumelight sourcesusing penumbrawvedges. The penumbravedgetechnique
allows for real-timesoft shadevsin relatively simplescenes.

We presentanovel coveragecalculationtechniqudor sphericalight sources,
which signi cantly reducesthe amountof pixel shaderinstructionsand the
amountof texture memoryrequiredfor look-uptables.

We identify a performancebottleneckin the algorithm which preventsthe
achiezementof real-timeperformancen complex scenesandwe presenta nev
version of the algorithm that eliminatesthis bottleneckfor a limited classof
shadav castingobjects.

We have implementedboth versionsof the soft shadev algorithm in our
gameengine,and we comparetheir respectre performanceon differenthard-
ware. Someimplementatiordetailsaregiven, including the CG sourcecodefor
thevertex andpixel shadersve have used.

We discusshow to effectively managea large numberof shadev volumesin
adynamicgamescenewvherebothlights andshadev castersmove aroundfreely.
Finally, we give an overvien of someof the limitations in graphicalhardware
anno2003thatintroduceunnessesamyork loadsonthealgorithm,thusdegrading
performance.

Contents

1 Intr oduction

2 Lighting
2.1 Lightmodels
211 Localmodels.,
212 Globalmodels
2.2 Lightingin real-timecomputemgraphics
2.2.1 DiffuseBRDFs.
222 SpeculaBRDFs
2.2.3 Ambientlight oL
2.2.4 Thestandardighting modelfor real-timeapplications . .
2.2.5 Vertexvs.pixelbasedighting

3 Shadow techniques
3.1 Overview of shadev algorithms
3.2 Stencilshadovs
3.2.1 Theshadovvolume
3.2.2 Usingthestencilbuffer
3.3 Improvingstencilshadavs
3.3.1 Carmackseverse.
3.3.2 Two-sidedstenciltesting.
3.3.3 Vertex shadercalculationof shadev mesh.
3.4 Thesingle-passtencilshadev algorithm
3.5 Approximationgo therenderingequation.

4 Softshadavs
4.1 Softshadevsusingpenumbravedges.
411 OVervian o v it
4.1.2 Wedgecreation.
4.1.3 Culling avayunnecessarfragments
4.1.4 Modifying thell buffer

4.1.5 Summingup coveragecontributions 45

4.1.6 SummMary. e e 46
4.2 Fastcoveragecalculationfor sphericalight sources. a7

421 Unitspherespace. 48

4.2.2 Coveragecalculation. 48

4.2.3 Optimizationsummary. 51
4.3 Problemswith thesoftshadev technique 52

4.3.1 Accessothez-buffer 52

4.3.2 Limitedblending. 53

4.3.3 Splittingthewedgesntwohalves. 55

4.3.4 Renderingpnewedgeatatime. 56

4.3.5 Fill-rateproblems. 58
4.4 Theperloopalgorithm 59
4.5 Performancanalysis. 62
Shadov management 64
51 Frustumculling 64
5.2 Boundingavertex shadeshadevvolume 66
53 Scendree e 68
5.4 Efcient shadevrendering. 70
Implementation details 74
6.1 ThePeroxideengine 74
6.2 Calculatingscreen-spaceoordinatesn ashader. 77
6.3 Thesoftshadev algorithm 80
6.4 Theperloopsoftshadev algorithm 84
6.5 Vertex shadeshadeovvolumes. 88
Conclusion 90
7.1 Results 90
7.2 Futurework 91
Working with 3d graphics 93
Al Terminology. e 93
A.2 Thegraphicspipeline 96
A.3 Vertexandpixelshaders 102
Screen-shots 106

Chapter 1

Intr oduction

A realistic light settingwith propershadaevs is very importantin 3d graphics.
Without shadavs,imagegendsto look at andit is dif cult (or evenimpossible),
to determinghe sizeandspatialrelationof the objectsin the sceneln theupper

left cornerof gure 1.1asimplescends renderedvithoutary shadevs. Without
changingthe cameraangleit is hardto determinewhereexactly the benchis lo-

catedin the scene,but at rst glanceit would seemthatit is standingon the
ground,a bit behindthe lamppost. Indeedthatis one possibleinterpretationof

theimage,ascanbe seenin the bottom-leftrenderingwhereshadevs have been
enabled.Anotherinterpretatiorof theimagecould bethata slightly smallerver-

sionof thebenchis oating in theair a shortdistancan front of thelamppostas
showvn in theupperright renderingn the gure. Withoutshadevsit is impossible
to tell which of the two interpretationss correct,but assoonasthe shadavs are
includedtherereallyis no doubt.

In a computergameshadavs areimportantaswell, not just becausehey in-
creasethe level of realismand overall quality of the graphics,but alsobecause
they canaffectthe game-playsigni cantly. F.ex. if the playeris requiredto jump
ontoa platformor dodgea moving object,shadaevs provide very importantvisual
cluesrequiredfor the playerto determinevhento presshejump or dodgebutton.
Without shadevs suchtaskscanquickly becomédrustratingandanng theplayer
to the pointwherehe stopsplayingthegame.As aresult,anenormousamountof
researchasbeendoneon thetopic of real-timeshadaev algorithms,fastenough
for usein anactualcomputergamesetin acomplex 3d ervironment.

Currentlymostreal-timeshadaev algorithmshave beenlimited to hard shad-
ows like thosein gure 1.1. Hard shadaevs aretheresultof light sourceseing
modeledasasinglepointwith noareaandcanberecognizedy averysharptran-
sition from light into shadav. If light sourcesare modeledwith an actualshape
with anareaor volume, (asf.ex. a sphere) soft shadowscanbe produced. Soft
shadaevs canberecognizedy theirinclusionof apenumbraegion: anareathatis

3

-

. ey

Figurel.2: Hardvs. softshadavs

neitherfully lit norfully in shadev. Thevisualquality of soft shadevs compared
to thatof hardshadavsis veryhigh,asdemonstrateth gure 1.2. It isthushighly

desirableto be ableto applyreal-timesoft shadevs to computergames Unfortu-

nately the computationgequiredfor soft shadevs aremuchmorecomple than

thoserequiredfor hardshadaevs. To the bestof our knowledge,noreleasedjame
hasutilized true, real-time , dynamicsoft shadevs?.

Keyresults

In this thesiswe explore the possibilitiesof applyingtrue andfully dynamicsoft

shadavs to gamescenesWe have implementedaswell asdevelopedseveral op-

timizationsfor, arecentsoft shadev algorithmandappliedit to our gameengine.
Our contributionsinclude a novel techniquefor calculatingcoverage valuesfor

sphericalight sourcesWith thistechniquewne areableto signi cantly reducethe

lengthof the pixel shader usedfor renderingsoft shadavs, aswell astheamount
of texture memoryrequiredfor the technique.We alsodiscusssomeunresoled

problemsthatstill remainwith regardto the technique andwe identify a serious
performanceottleneckin thealgorithm,which will have to be addressetefore
the techniquecanbe appliedto actualgamescenes Finally we presentanddis-

cussanoutlinefor anew algorithm,which overcomeghis bottleneckor alimited

classof shadaev castingobjects.

De nitions and assumptions

In writing this thesiswe have assumedhat the readeris familiar with common
termsandconceptaisedin 3d computergraphics.Thisincludesconceptsuchas
the color buffer, z-buffer and stencilbuffer. Furthermorejt is assumedhatthe
readerunderstandsiow the graphicspipeline operateon 3d meshesandmoves
themthrougha chainof 3d spaces(oftenreferredto asthe model-spaceworld-
spaceyiew-spaceandprojected-spacepeforeactuallyrasterizingtheminto the
color buffer. An understandingf homogeneousoordinatesandhow they solve
the problemof beingableto implementtranslationaswell asrotationandscal-
ing througha 4x4 transformatiommatrix is alsoassumed.Finally, the readeris
assumedo have athoroughunderstandin@f vertex andpixel shaders.Referto
AppendixA for abrief introductionto all theseconcepts.

Wheneer we refer to ‘current graphicscards' or 'the latestgraphicshard-
ware', throughoutthe thesisthe intendedmeaningis DirectX 9.0 basedgraphics
cardssuchasnVidiasnv30-basedndATIs R300-basedards.All thesechipsets
hassupportfor vs2.0andps2.0shadersvhich arethe minimumrequirementsor

I'Fake' softshadevshave beenappliedto certaingamesvherea hardshadev is simplyblurred
somevhatalongthe edge.

our implementatiorof the soft shadaev algorithm. Speci cally we have usedDi-
rectX 9.0bwith a Radeor®700Prographicscard.

Thesisorganization

In chapter2 we brie y discusshow light worksin therealworld andin computer
graphics.We introducesomethingcalledtherenderingequation a compactfor-

mulationof how to calculatdighting thatgivesusaframeawvork againstwhich we

cancompareour real-timesolutions. In chapter3 we give a shortovervien of

the differentreal-timeshadev solutionsandthenwe elaborateon stencilshad-
ows thetechniqueour soft shadev implementatioris basedupon. In chapter4

we introducea techniquefor renderingsoft shadavs in real-timewith the useof

arenderingprimitive calleda wedge, andwe presenur novel extensiongo the
soft shadaev algorithm,followedby a discussiorof the unresoledproblemswith

the technique.In chapters we discusse$iow a large amountof shadaev casting
objectsin a gamesceneis ef ciently managedso that only thoseshadaev vol-

umesthat affectsthe visible imageare processe@ndrendered.In chapteré we

provide an overview of our gameenginewhich hasbeenthe framawork for our
implementatiorof the soft shadev technique andwe presensomedetailsof the
implementationwhich wasleft outin the earlierchapters.Finally, in chapter7,

we summarizeour results drawv conclusionsandgive suggestion$or futurework

thatwould improve the soft shadaev technique.

Chapter 2
Lighting

Oneof the goalsof real-time3d applicationssuchasa computergameis to sim-
ulatea world andto generateeal-timeimageswhich, to a certaindegree,tricks
usinto believing thatwe areactually'inside’ this virtual world. Many real-time
applicationshave beencreatedvherethe userfeelsimmersedn thevirtual world
andconsequentlyin somesensebelievesthatthegeneratedmagesarereal. This
is not aresultof photo-realistidmages asthesearegenerallyimpossibleto pro-
ducein real-timetoday but becausehe humanbrainis capableof Itering away
the aws andinconsistencien computergeneratedmagesandrecognizewhat
theimageis supposedo representPhoto-realisnis thereforenot necessarilyan
absolutaequiremenandin someapplicationscartoondor instancenotevende-
sired. In otherapplicationghough,f.ex. movies,gameswith arealisticlook and
architecturavisualizationapplicationsijt is desirablego generatemagesasclose
to reality aspossibleandfor suchapplicationst is importantto studywhy thereal
world lookstheway it does.

In this chapterwe rst give a theoreticaloverview of local and global light-
ing models,introducingsomethingcalled the renderingequationaswell asthe
conceptof a BRDF. Thenwe discusshow this theory canbe approximatedand
appliedto real-timegraphics.In doing so,we introducea framework thatwe can
latercompareour variouslight andshadev methodswith.

2.1 Light models

Light modelsarethe mathematicalormulasusedwhencalculatingthe color of a
pointon the surfaceof anobject. Many differentmodelshave beenproposedand
the mostimportantdistinctionbetweenthemis whetherthey arelocal or global
models.

2.1.1 Local models

Local light modelscomputethe color of a point on a surfaceby consideringhe
position of the point, the propertiesof the surfacethat it is a part of, andthe
propertiesof ary light sourceghatshinesonit. This meanghatno otherobjects
in the scenegxceptlight sourcesareconsideredeitherasblockinglight nor as
re ecting light. This s clearly a crudeapproximationandit will f.ex. make no
differencewhetherthereis anopaqueobjectbetweerthe pointandalight-source
or not. In amorerealisticlight modelsuchan objectwould causea shadav. In
spiteof this, locallight modelsareoftenusedin real-timeapplicationdbecaus®f
theminimal amountof computationsequired,andbecaus®nly local knowledge
of the scenggeometryis needed.

We startby consideringa point x° If x°receveslight from anothempoint x®
f.ex. alight sourcethenwe areinterestedn how thatincominglight is re ected.
If the eye point is placedat x we wantto know how much light emittedat x°
towardsx®is recevedby x. Figure2.1 shavs this setup.

geometry

Figure2.1: Thethreepointsinvolvedin thelocal light model.

Sinceno morelight canbe re ected thanis receved, and sincethereis no
suchthing asnegativelight, thelight receiedby x°andthelight re ectedtowards
X is assumedo be relatedby a factorin [0::1]. There ection is dependenbn
the geometricrelationshipbetweenthe three points, an example being that the
fartherthe threepoints are apartthe lesslight x will receve. There ection is
alsodependenon the orientationof the surfaceson which the pointsarelocated.
F.ex., if thesurfacenormalat x°is pointingtowardsx®? x°will receie morelight
thanif it hada differentorientation. Re ection is alsohighly dependenbn the
wavelengthof theincominglight. All thesefactorscanbe combinednto asingle
function: the BRDF or BidirectionalRe ectanceDistribution Functiont. We can

!BRDF is alsocalledspectal re ectivity coefcient. It wasintroducedby Nicodemuset al.

8

describethelight passingrom x°to x asaresultof light passingrom x%%to x°as:

Lyod(x; X% = L(x%x®§BRDF (x; x® x% (2.1)

Noticethatthewavelengthof thelight is not mentionedexplicitly. This omis-
sionis madeon purposebecauseherelationis thenindependenbf how we rep-
resentcolors. For the usualRGB representatiomf colorsall the elementsare
3-vectorsandthe multiplication operationis percomponentmultiplicationasde-
scribedabove.

Light is actuallya streanof photonsandsincea particlecanonly bere ected
in onedirection,the BRDF actuallydescribeghe chanceof re ecting a photon
in a certaindirectionor the percentaye of all incomingphotonsthatarere ected
in thatdirection. Thisis notanimportantdistinctionaswe do not modelphotons
directly.

A differentformulationof the BRDF is possible.Insteadof using3 pointswe
cande ne a BRDF function which takesasinput a single point, a directionfor
theincominglight andare ection directior?. Underthedirectionformulationthe
locallight modelwould look lik e this:

L, (X %0) = Li(X; %)BRDF (X; i3 +0) (2.2)

Wherek; isthedirectionof theincominglight, and*,, is theoutgoingdirection
of there ectedlight. It is sometimesnorecorvenientto usethis formulationof
the BRDF but the basicideais the same.

A visualizationof a BRDF for a singleincomingdirectionis seenin gure
2.2. The distanceof the curve from x° representshe amountof re ection. The
fartheraway thecurweis, themorelight is re ectedin thatdirection.

b\

X'

Figure2.2: Visualizationof a BRDF for asingleincomingdirection.

in 1977[NRH" 77]. Notethatin the mannerwe presenit hereit is actuallythe unoccludedhree
pointtransportre ectanceasdescribedn [Kaj86].
2This s the original formulationof the BRDF.

TheBRDFis averygenerabdescriptiorof re ection, andin real-timeapplica-
tionsa generaBRDF is oftentoo expensve to evaluateso insteada simplerand
cheapemodelis oftenused.We will elaborateonthisin section2.2.

2.1.2 Global models

Global light modelstake into accountthe entire virtual world. This meansthat
every objectin the entire scenecan potentially in uence the color of a point.
Examplesof suchin uencesareobjectsblockingdirectlight from alight source
to thepointor objectsre ecting additionallight ontothepoint. Theresultof using
agloballight modelis oftencalledglobalillumination.

The 'standard' model is the rendering equation introducedby Kajiya in
1986[Kaj8g. Kajiya says:

“[The model]subsumes wide variety of renderingalgorithmsand
providesa uni ed context for viewing themas motre or lessaccurate
approximationgo the solutionof a singleequatiori.

Therenderingequations:

Z
L(x;x9 = v(x; x% Le(x; x9 + . BRDF (x; X% x%JL (x% x%dx®® (2.3)

The functionv encodesisibility. v is 1 if x andx® are mutually visible and
0 otherwise.L is thelight passingrom x°to x becaus®f the emissionof light
at x° Unlessx?is a light sourcethis factorwill be zero. S is the union of all
surfacesof all objectsin theentirescene.Therenderingequationthereforestates
that the light passingfrom x°to x is zeroif they are not visible to eachother;
otherwisethey arethe sum of the emittedandthe re ected light from x°% The
emittedlight is a propertyof the object,which x°is a partof, andthe geometric
relationshippetweerx andx® There ected light from a singlesourcepoint, or a
singleincomingdirection,hasalreadybeendescribedn equation2.1,sothetotal
amountof re ectedlight mustbethesum(integral) of thecontributionfrom every
pointin thescene.

The renderingequationcannotbe directly evaluatedsinceL occurson both
sidesof the equation.However we canreformulateit asKajiya[Kaj86] does.We
startby writing it in acompactorm:

L = vLe+ VTL (2.4)

where
z

<Tf>xx%= BRDF(x;x%x%f (x®x%dx®
S

10

By evaluatingequation2.4recursvely we get:

L = vlLe+VTL
= VLe+ VT(VLe+ VTL)
= VLe+ VT(VLe+ VT(VLe+ VTL))
= vle+ V(TV)Le+ V(TV)%Le + V(TV)?TL

= ? v(TVv)"Le (2.5)
n=0

An intuitive interpretationof this is thatthe light from a pointis the sum of
light re ected0,1,2,3,. . timesfrom the point. This allows a reformulationof the
distinction betweenlocal and global models. Local modelsonly calculatelight
which is re ected zeroandonetimes,i.e. light emittedfrom the point andlight
receved directly from a light source,anddisregardvisibility for the re ections.
Globalmodelscalculatelight re ected any numberof times,usinga local model

whencalculatinga singlere ection.

2.2 Lighting in real-time computer graphics

The mostgeneralway of representinga BRDF is to sampleit for a numberof

incoming and outgoingdirectionsand then usethe samplesas a lookup table,

interpolatingthe values.SincemostBRDFsarenot smoothquitealot of samples
of this six-dimensionalfunction® is required. In real-time applications this is

often too expensve. To develop a simplermodelwe will look at specialtypes
of BRDFsthat areinterestingfrom a performancepoint of view. The standad

lighting modelfor real-timeapplicationsis a resultof attemptso modelspecial
typesof BRDFsandthe multiple re ections of light describedoy the rendering
equation.

2.2.1 Diffuse BRDFs

A perfectlydiffuse' surfacere ects incominglight equallyin all directions. Ex-
amplesof this aredull, matmaterialssuchaschalk or soot. The BRDF for such
surfaceds constanundera changeof outgoingdirection(adirectconsequencef
re ecting equallyin all directions).A changen theincomingdirectionwill still

SA BRDF in the directionformulationis six dimensional:two valuesfor the coordinatesof
pointon asurfaceandtwo valuesfor eachdirectionsincea directioncanberepresenteéh spher
ical coordinates.

4Also known asa Lambertiarsurface.

11

changethe BRDF sincethelight receiedby x° dependn the orientationof the
surfacewhich xis a partof. In gure 2.3we seea beamof light with unit width
hitting a surfaceatanangle . Theareacoveredby the beamis equalto 1=cos .
We canthereforeseethatlight hitting x° shouldbe scaledby cos , where is the
anglebetweerthe surfacenormaln andthe directiontowardsthe sourcepoint. If
we call thatdirection’;, asin thedirectionformulationof the BRDF, andassume
thatbothn and*; arenormalizedthencos canbe calculatedas*; n (thedot

productof &; andn).
N
"
1{ Light beam v /4 s 6

Figure2.3: An incomingbeamcoversanareaof 1=cos .

This cosfactoris fundamentaln the sensehatall physicallycorrectBRDFs
mustinclude this. Exceptfor the cos factorthe BRDF for a perfectly diffuse
surfaceis constant.

2.2.2 SpecularBRDFs

Anotherspecialcaseof BRDFsis the perfectlyspeculasurface.Heretheincom-
ing light is alwaysre ectedexactlyin themirror directiorr. Examplef perfectly
speculasurfacesincludemirrorsandstill watersurfaces.If we disregardthe cos
factoron theincomingdirection,a BRDF for a perfectlyspecularsurfacein the
directionformulationis:

(

: :)
| .
BRDF (xX; & ko) = if &, = mirror(*;)

0 otherwise

Where is a constantwhich tells how muchof the light is re ected versus
absorbedSincefew materialsare perfect,light is oftenre ectedin asmallcone
aroundthemirror direction.A surface whichis mostlyspecularbut notperfect,s
calledglossy In gure 2.4we seeavisualizationof a perfectlydiffuse,a perfectly
speculaandaglossyBRDF

5The mirror directionis wherethe incoming angleequalsthe outgoingangle,andit canbe
calculatedas: mirror(*) = 2(+ n)A .

12

X 3

X X

Perfectly diffuse Perfectly specular

¢ v

X

Glossy

Figure2.4: Specialcasef BRDFs.

2.2.3 Ambient light

If we look at the renderingequationas written in equation2.5 it is the sum of
light re ected0,1,2,3,. .times. Thelocal modelwe areaboutto describemakes
a fair approximationof the Oth and 1stre ection but disregardsthe rest. These
missingre ections would give a subtleillumination in a real ervironment,even
on surfacesthatarenot directly illuminatedby ary light sourcesThisis because
it is usuallypossibleo nd apathwhich,whenre ectedenoughimes,eventually
reaches light sourcefrom ary onepoint.

A very crudebut cheapapproximatiorto thisis to introduceanambientterm.
The globalambientlight is de ned asa constantamountof light thatilluminates
all objectsin the scene.Furthermorelight sourcesemit ambientlight which is
receved by objectsindependentf their orientation. Differentobjectscan still
re ect this light differently however andthe ambienttermfor a pointis therefore
theambientlight multiplied by anambientre ection coefcient for the point.

2.2.4 The standard lighting modelfor real-time applications

Thethreedifferenttermsintroducedabove canbe combinedto form alocal light
model,whichis usedby allmostevery real-timeapplicatior. It canbewritten as:

5We shallnot describeall the detailsof the standardight model.For amorethoroughdescrip-
tion seef.ex. [WND* 99 pp.211- 2150r [FvDFH91] section16.1.

13

L(x)

Xemission
+ gl Obalimbient Xzanbient
i

ambient Xambient T

+ Li‘;lttenuation %} L;jif fuse Xdif f use (ﬂ !"'i)+ g

=0 Ispecular Xspecular (R (i + +))Xsnininess)

1

Wherex, meangropertyp of thepointx, andL:O is propertyp of theith light
source.

The equationstatesthat the color of a point x is the sum of the emission,
global ambientand the ambient, diffuse and specularcontribution from all N
light sourcesn the scene.The contribution from eachlight sourceis dependent
on the distancebetweerthe light sourceandthe point. This attenuatioris called
L wenvation iN theequationandis de ned as:

1
Li+ Lid+ Lid?

i - : .
I—at'[enuation = min 11

Whered is thedistancebetweerx andtheith light source.Ly, L| andL}, are
the constantlinear andquadmatic attenuationparametes respectiely. They can
be adjustedindividually for eachlight to achieve a certainattenuatiorbehaior.
Thetotal attenuatiorfactoris clampedo therange[0::1] aslight cannotbe nega-
tive, andconsideringhatthe attenuatiorshouldnever make a light strongerthan
its original power.

Theambientcontributionfrom alight sources only dependenvnthedistance
to thelight source whereaghe diffusecontribution is scaledby the cosfactoras
describedabore. The specularcontribution from a light usesa modelproposed
by PhongBui-Tong[BT5X. It modelsglossysurfacesby assuminghatthe light
specularlyre ectedis dependenbntheanglebetweerthe outgoingdirectionand
the mirror direction,anda materialdependenshininesgactor (Xshininess)- The
dot productbetweenthe normalvectorandthe mirror vector which arenormal-
ized beforeuse,returnsa numberin [0::1]. Raisingthis numberto the power of
theshininesgactor whichis typically betweerl and256, givesa functionwhich
is 1 whenthe angleto the the mirror directionis 0 andfalls of quickly with in-
creasingangle. In early implementationghe true mirror directionwasnot used
for ef ciency reasonsinsteadhehalfwayvector, calculatecask; + +,, wasused.
Currentimplementationsan easily afford to calculatethe true mirror direction
andusethatasinput to the Phongmodel.

The standardighting modelis a highly empiricalmodel. It usesapproxima-
tions which work well in mary caseshut it hasno groundingin arny theoretical

14

modelof light interaction.Phongs modelfor speculare ection is aexactly such
an imperial model. Furthermore the calculationsfor the ambient,diffuse and
specularcontributionsaretotally separate.This allows light sourcego emit red
‘'specularlight andgreen'diffuse’ light for example.Thiswouldn't be physically
correct,but it givesalot of artisticfreedomto achiese a certainlook.

The reasonfor the popularity of the standardighting modelis probablya
combinationof four things: it is relatively cheapto compute,it is conceptually
simple,it modelsmary of the mostimportantaspect®of light/objectinteraction,
andit allows a greatdegreeof artistic freedom. The two mostusedreal-time
APIs, OpenGLandDirectX, implementthe standardanodelin their x edfunction
pipeline, and previously applicationswere forced to usethe standardmodel if
they wantedto take advantageof hardware acceleration.This haschangedwith
theintroductionof theprogrammabl@ipelinewhichallowsyouto implementary
modelyou desire.

2.2.5 Vertexvs. pixel basedlighting

The standardighting model,describedabove, canbe evaluatedper fragmenton

currenthardware. Previously this wastoo computationallyexpensve anda dif-

ferentapproachwasused.Thelight modelwasonly evaluatedpervertex andthe
resultingcolor wastheninterpolatedacrossthe triangle. This is called Goraud
Shading (see[FVvDFH91] section16.2.4). The two approachesre also called
per-vertex lighting andper-pixel lighting. Pervertex lighting is of coursecompu-
tationallycheapebut it hasseveralvisible de ciencies,wherethe mostimportant
onesstemfrom the factthatthe interpolationcannotproducehighervaluesthan
the valuesat the vertices. Thereforea fragmentin the centerof a triangle can-
not be brighterthanthe fragmentsat the vertices. Consequentlyareasvherethe
lighting changesapidly, suchasspeculatighlightsandlight sourcessery close
to thegeometrywill exhibit visualartifacts,especiallyin animatedscenesThese
problemswill becomdessnoticeablaf objectsarehighly tessellatediusingmore
verticesandtriangles) but asmentionedvith currenthardwareit is possibleto use
perpixel lighting which of courseproduceghe bestresults.

Figure2.5shows a simplescenaenderedvith pervertex lighting on theleft,
andwith perpixellighting ontheright. Theleft sidealsoshavsawire-frameview
of the wall segmentbeingilluminated. As is seen the two differentapproaches
resultsin very differentimages.With pervertex lighting thelight doesnot seem
to have ary effect at all. And indeed,with this setup,the light doesnot affect
theimagesincenoneof the verticesthatmake up the wall segmentfall within its
sphereof in uence. With perpixel lighting, an attenuationvaluefor thelight is
calculatedat eachfragmentandasaresult,thewall is correctlylit.

15

Figure2.5: Pervertex andperpixel lighting.

16

Chapter 3

Shadow techniques

An exact solutionto the renderingequationdiscussedn the previous chapteris
not possible. Various off-line renderingtechniquessuchas raytracing, photon
mappingandradiosity give approximationdo the renderingequationwherethe
visibility functionsaretakeninto considerationThis meanghatthesetechniques
automaticallyproduceimageswhereshadavs, sometime®vensoft shadavs, are
included.However, the only feasiblesolutionfor real-timerenderings currently
rasterizationwhich in its basicform usesthelocal light modeldescribedn sec-
tion 2.2.4. By de nition, usinga local light model meansthat shadavs are not
included,but aswe shall seein this chaptervariousalgorithmsexist that extend
therasterizatiorapproactwith avisibility functionfor directillumination.

In this chapterwe rst give an overviev of the mostimportantreal-time
shadev algorithms. We thenfocus on a particulartechniquecalled the stencil
shadaev algorithm,which is usedby mary real-timeapplicationstoday Several
optimizationsjmprovementsandversionf the stencilshadev algorithmarede-
scribedasis how they canbeviewedasapproximationsgo therenderingequation.

3.1 Overview of shadow algorithms

For real-timeapplicationsshadav algorithmscanbe split into threegroupsthat
we have namedimited, staticandgeneral.

Limited algorithmsoperatan ervironmentswith veryrestrictve assumptions.
An exampleof thisis theprojective shadev algorithm[Bli88], whichassumethat
the objectreceving shadaev is a planewith a known orientationandpositionand
thatno objectsare positionedbetweenhe shadev casterandthe plane. Limited
algorithmssene a purposéan speci ¢ ervironments,e.g. a CAD systemput are
notwidely usedtoday

Staticapproachearecharacterizely theirassumptionghatobjectsandlights

17

arestationaryandit is thereforegpossibleto precalculatshadaev andlight informa-
tion. An exampleof a staticalgorithmis lightmaps(see[AMHO02] section5.7.2),
which precalculatesight, andthusshadaev, informationto textures. Objectsare
thenrenderedwith this additionaltexture modulatedon top of their usualtexture
map. Sincethe precalculatiorcanbe a globalillumination calculation,very good
imagequality canbe achiezed. Furthermoreasthe renderingof an extra texture
is somethingthat all moderngraphiccardsexcel at, the algorithmis very fast.
Yet the algorithmalsohasits dravbacks suchasthe staticnatureof the textures,
which preventsnon-stationaryobjectsfrom castingshadevs. Furthermorethe
storagespacerequiredfor the lightmappingalgorithmcanbefairly large sincea
lightmap must be storedfor eachtrianglein the scene. Despiteall of this, the
lightmapalgorithmis hearily usedin mary real-timeapplicationspftento good
effect.

Generalalgorithmstry to calculateshadaevs in a generalernvironmentwhere
very little canbe assumedhboutthe natureof the shadev castersor the shadev
recevers,andwhereall objectsandlights canmove freely aroundthe scene.

This division of shadev algorithmsinto threegroupsis quite crude,anda lot
of researcthasbeenconductedo createalgorithmsthatcrosstheseboundarieso
reacha goodcompromisebetweerthe advantagesanddravbacksof eachgroup.
See[AMHO02] section6.12for an overview of real-timeshadev algorithms. In
recentyears,researcthasfocusedon generelalgorithmsbecausalevelopments
in hardware have renderedhe limited and staticalgorithmsrelatively simpleto
execute.Our focusfor the remainderof this thesiswill be on generalalgorithms
only.

The two mostsuccessfugeneralalgorithmsare stencilshadowsandshadow
maps Stencilshadevs will be explainedin detail belown. The basicobseration
with regardto shadev maps[WI178] is thatbetweertheview-spaceof theobserer
andtheview-spaceof alight sourcethereexistsalinearmapping(expressibleby
a 4x4 matrix andthereforecheapto calculate).The algorithmhastwo passesin
the rst passhescends renderednto thelight's view-spaceandthe depthinfor-
mation,(i.e. how far away every fragments from thelight), is storedin ashadow
map In the secondpassthe sceneis renderedhormally andit is now possible
to determinewhethera fragmentcan'see'the light source. This is determined
by transformingthe fragmentgositioninto the lights view-spaceandcomparing
its depthto the storeddepthvaluein the shadev map. If the fragmentis farther
away thanthe storeddepthvalue anotherobjectmustbe blocking the pathfrom
thefragmentto thelight source andit is thereforein shadav.

The shadev mapalgorithmwas rst proposeddy Williams in 1978[Wil78],
and perhapgshe mostimportantadditionto it hasbeenthe paperby Segal et al.
[SKv™ 92], in which they notedthatthe requiredcomputationsarevery similar to
the onesrequiredfor perspectie correcttexture mappingand thereforealready

18

implementedn hardware. See[ERCwn] for a detaileddescriptionof how this is
accomplished.Sinceshadev mapscanbe hardware-accelerated is quite fast,
andit is usedin mary real-timeapplicationgoday Its mostimportantadvantage
is its versatility: it cancastshadavs from andontoeverythingthatcanberendered
by the application the only exceptionbeingobjectswith semi-transparerareas.
It hasone major dravback however: the discretizationand limited precisionof
the shadev map canresultin very visible artifacts,for examplein the form of
jaggedshadev edges.Eventhoughmary improvementshasbeensuggestedhe
pixel preciseshadavs, seenn for examplethe stencilshadev algorithm,have not
yetbeenachiered.

3.2 Stencilshadows

Crow presentedhe stencil shadev algorithmin 1977 [Cro77] underthe name
projectedshadowpolygons In 1991Heidmannsuggested[Hei91o usethe sten-
cil buffer to implementCrow's original algorithmwhich gave the algorithmthe
nameby which it is bestknown today Stencilshadevs belongsto the group of
volumetricshadowalgorithmsasthe shadeved volumein the scends explicit in
thealgorithm.

The basicideain the algorithmis to generatefor eachobjectandlight pair,
the volumewhich is in shadev from thelight. Whenshadinga fragmentit must
thenbe determinedf it is insideary of thesevolumes. This ideais depictedin
gure 3.1. The shadav volumesarethe gray areaswherethe two spherescast
shadev. The volumesshouldideally extendto in nity , but it is sufcient that
they extendto the far side of the geometry We will elaborateon the extension
of the volumeslater Whenshadinga pixel we tracea line from the eye to the
fragmentand countthe numberof entriesinto shadev andthe numberof exits
out of shadav. If the numberof entriesare greaterthanthe numberof exits the
point mustbein shadav, otherwiseit is lit by thelight?. Take f.ex. the point p;.
This pointis in shadev sincethe numberof shadev volumeentries(1) is greater
thanthe numberof exits (0). Pointp, on the otherhandis notin shadaev since
the numberof entriesand exits areboth 1. Note how this approachalsoworks
acrosanultiple shadev volumeswheretheray passesll theway throughoneor
moreshadav volumesbeforereachinghepixel. Pointps is correctlyclassi edas
beingin shadaev sincethenumberof entries(2) is greatethanthenumberof exits
(1). Thisapproaclassumeshattheview pointis outsideany shadev volume.An

Transparenareadn atexturearehandledcorrectlyif they are100%transparent.

20thermethodsfor determiningwhethera pixel is insidea volumeor not arepossiblebut the
line-tracealgorithmis closeto the onesuggestedyy [Cro77] andlendsitself nicely to hardware
acceleration.

19

improvementthatremovesthis restrictionwill bedescribedn section3.3.

Eyepoint

——
~.

/ Py TRy

\ Geometry

Figure3.1: Stencilshadevs: Raysfrom eyeto pixel

As we areonly interestedn afragments colorif it is visible, (i.e. notcovered
by fragmentscloserto the eye), we canthink of thelinesfrom theeye to thefrag-
mentsasview raysbeginning at the eye, going throughthe centerof a pixel on
the screenandhitting the rst visible fragmentin thescene.Theview rayscount
thenumberof entriesandexits andwe canthereforedeterminevhethertheray is
in shadev or not whenhitting the fragment.By emitting view raysfrom the eye
throughall pixelson the screerwe would thenhave the shadev informationfor
the nal image.Fortunatelyit is not necessaryo do actualray tracingto imple-
mentthis, but thatis the conceptualdeaof the algorithm. Beforewe describea
differentimplementationye rst examinehow to modelthe shadav volume.

3.2.1 The shadowv volume

The stencilshadev algorithmassumeshat shadev castersconsistof anopaque
trianglemeshandthatlight sourcesaremodeledaspoints,(i.e. have zeroradius).
A shadowmeshcanthe be build consistingof ordinary but invisible, geometry
which modelsthe actualshadav volume. For a singletriangleit would consistof
threequads, eachextendingfrom atriangleedgeto in nity , away from thelight.
More preciselytheline wheretwo quadsneetextendsthroughthe corresponding

3Quadrangleis usuallyshortenedo quad

20

vertex in theexactoppositedirectionof the vertex to light direction. Figure3.2is

anillustrationof this.
‘ Shadow casting triangle

“)\/ and top of shadow mesh

Bottom of shadow mesh

Figure3.2: Shadaev volumefor asingletriangle.

For a generalmeshit is not necessaryo createquadsfrom all edges.Con-
sidertwo trianglessharingan edge. If both trianglesfacethe light thena quad
extendingfrom the sharededgewould be unnecessarginceit would represent
neitheran entry nor an exit from the shadev volume. At rst glanceit would
appearthatthe edgeswvhich oughtto generatehe shadev meshshouldbe those
on the silhouetté of the mesh,(as seenfrom the light). However, thereare at
leastthreereasonswhy this is not a goodapproach.Firstly, the silhouetteis, in
generalacollectionof partsof edgesandthiswould complicatehe generatiorof
theshadov mesh.Secondlyif we only createquadsrom the silhouettewe would
not calculatecorrectself-shadwing® in all cases Finally the computationof the
silhouetteis quite expensve. We thereforeusea simplerapproachandgenerate
the shadev meshfrom the contouredges.Thesearethe edgesvhich have either
only one front-facing neighboringtriangle, or wheretwo neighboringtriangles
have differentorientationgowardthelight, (i.e. whereoneis facingtowardsand
theotheraway from thelight). To calculatethe contouredgeswve startby creating
alist of all edgesanda datastructurethroughwhich we can nd the neighboring
trianglesfor a givenedgein constanttime. This is a precalculatiorstepwhose
resultremainsvalid aslong asthe connectvity of the meshdoesnot change(the
verticescan changeposition without affecting connectvity, soit is possibleto
have animatedmeshes).To calculatea shadev meshwe thenmake a singlepass
throughall edgesandcalculatewhetherthey area contouredgeor not. Giventhe
previousde nition anddatastructurewe seethatthis canbedonein constantime

4Thesilhouetteis the outeredgeof anobjectasseenfrom a particularpoint
5Self-shadwing occurswhen a part of an objectcastshadev on anotherpart of the same
object.

21

for asingleedge.Thecalculationis therefordinearin thenumberof edgedn the
mesh.

Notethatfor thealgorithmto work it is not necessaryor the shadev meshto
be closedatthetop or bottom. It would seenthatview rayscouldthenenterand
exit thevolumewithoutcountingentriesandexits correctly butthisis notthecase.
A view ray cannever passthroughthe missingbottomof the shadev meshsince
thebottomis atin nity andthefragments thereforecloser It cannotpasghrough
themissingtop eitherbecauseve have assumedhatthe shadev generatingnesh
is opaque. The fragmentwill thereforebe on the shadav generatingmesh,or
possiblyin front of it, stoppingtheray beforeit entershe shadaev volume.

3.2.2 Usingthe stencil buffer

Emitting view rays and tracing them throughthe world would suggesta ray-
tracingimplementatiorbut, asHeidmannsuggestedh 1991[Hei91], givenboth
astencilandz-huffer it is possibleto usea rasterizatiorapproach.

Sincewe arenot interestedn the actualnumberof shadev entriesand exits
only whetherthe rst is greaterthanthe latter, we introducethe shadowvalue
which is the differencebetweernthetwo. A shadev valuegreaterthanzerothen
meanghatafragments in shadav. Thebasicideain thestencilshadev algorithm
is to let the shadev value be storedin the stencilbuffer andupdateits valuefor
all pixelscoveredby a shadev meshtriangle,insteadof calculatingit for asingle
pixel beforemoving onto the next. The z-huffer is usedto determinevhetherthe
fragmenton the shadev meshtriangleis in front of or behindthe corresponding
fragmenton thegeometry

Figures3.3,3.4and3.5shav how thestencilvaluesareupdatedln the gures
we see,in a 2d 'sideview', somegeometry a shadav caster a light sourceand
aview point. The stencilbuffer is visualizedon thefar left. To make the gures
simplerwe have useda parallelprojectiononto the stencilbuffer, andthe stencil
valuefor a fragmentcanthereforebe found by moving horizontallyto the left.
In gure 3.3 we seethe initial setupwherethe stencilbuffer is clearedto zero.
In gure 3.4 we seethe effect on the stencil buffer after the rst shadev mesh
triangle, (the fat line), hasbeenrendered. This triangle is front facing and all
valuesbetweenthe lines |y andl; have thereforebeenincrementedo oneasa
front facingshadev meshtrianglerepresentsnentryinto shadaev. Valuesbelow
|, have notbeenaffectedasthegeometrywasin front of theshadev meshtriangle
andconsequentlyhe z-buffer testhasculled away thosefragments.In gure 3.5
the secondshadav meshtrianglehasbeenrendered.This triangleis backfacing
andwill thereforedecrementhe stencil valuessinceit representsan exit from
shadav. This hasbeendonebetweernthelinesl, andls. Again, valuesbelow |3
hasnot beenaffectedbecauseof the z-buffer test. We endup with the stencil-

22

Stencil
buffer
r

Shadow

: caster

Geometry

L

Figure3.3: Stencilvalues:beforerenderingshadev triangles.

Stencil
buffer

0 Shadow

caster
: N

Geometry

-

Figure3.4: Stencilvalues:afterrenderingoneshadav triangle.

23

Stencil
buffer
—

Shadow

1 \ /—\mstcr

0<

— /
0 = kGeometry

-

Figure3.5: Stencilvalues:afterrenderingwo shadaev triangles.

buffer containingthevalueonein theareabetweerthelinesl; andl,, andthepart
of thegeometrythatis in shadev correspondso this areaexactly.

The algorithmthat usesthis basicideais a multi-passalgorithm. In the rst
passt renderghe sceneonceto Il thez-buffer. In thesecondoassit renderghe
shadev meshego Il the stencil-luffer, asdescribedabove. In the nal passit
rendersthe sceneonceagainto addthe light contritution from the light source.
However in this passthe stenciltestis usedto cull away fragmentswherethe
stencilvalueis lessthanor equalto zero. This preventstherenderingrom taking
placein theshadevedareas A moredetaileddescriptions:

1
2
3.
4

. Clearcolorbuffer, z-buffer andstencil-tuffer.

. Renderthe scenewith only ambientandemissve lighting.

Disablewriting to color-buffer andz-buffer, enablestencil-tuffer.

. Renderall front facing shadev meshtriangles,incrementingthe stencil

valuewhenpassinghe z-test.

Renderall badk facing shadev meshtriangles,decementingthe stencil
valuewhenpassinghe z-test.

Re-enablenriting to color-buffer, setz-buffer testto equal,setstenciltest
to passwhenvalueis lessthan0 anduseadditive blending.

24

7. Rendetthe scenewith only diffuseandspeculatighting.

Step2 ensureghatall fragments,ncluding thosein shadav, have both am-
bientandemissve lighting andseneto Il thez-buffer. Step3 ensureghatthe
shadev meshrenderedext doesnotaffectthecolor-buffer, (directly atleast),and
thatwe canusethe valuesin the z-buffer without overwriting them. Steps4 and
5 aretheessentiabnesthatperformthe countingof entriesandexits asdescribed
above. Step6 setsthe z-huffer testto equal,ensuringthat only the exact same
fragmentsthat werevisible in the rst pass,arerendered.Step6 alsoenables
additive blending,meaninghatthe calculatedcolor will beaddedo the previous
contentof the color-buffer, andsetsup the stenciltestsothatonly the pixels, (or
rathertheir correspondindgragments)which areoutsideshadav will berendered
again.

Oneway to renderonly front facingor backfacingtrianglesis to usethe CPU
to classify the trianglesinto thesetwo cateoriesandthenonly renderthe cor-
rectsubsef the mesh.Anotherway is to usethe GPU's capabalityof rejecting
trianglesbasedon the orderthe verticesappearin whenprojectedto the screen.
If thetrianglesof a mesharegeneratedvith a consistenbrdering,eitherclock-
wiseor counterclockwisetheprojectedorderof theirverticesdeterminesvhether
they arefront or backfacing. Trianglesare usually generatedisinga clockwise
orderingof their vertices. Renderingonly front facingtrianglescanthenbe ac-
complishedby letting the GPU cull away all counterclockwisdriangles. The
entire shadev meshcanthenbe renderedn steps4 and5, andwhile this may
seemwastefulat rst, it allows the hardwareto performthe orientationcalcula-
tion andminimizesstatechangesaswell asthe amountof datasentto the GPU.
More importantly it allows the useof two sidedstencilasdescribedelow.

Sofarwe have assumedhatthereis only onelight-sourcein thescenewhich
is rarely satisactory Fortunatelyit is easyto generalizethe algorithmto handle
multiple light-sourcesThe stepsinvolvedare:

1. Clearcolor-buffer andz-hbuffer.
2. Rendetthe scenewith only ambientandemissve lighting.

3. Forall lightsl:

(a) Clearstencil-tuffer, disablewriting to color-buffer and z-buffer, set
z-huffer testto less-than.

(b) Renderall front facing shadev meshtrianglesgeneratedy I, incre-
mentingthe stencilvaluewhenpassinghe z-test.

(c¢) Renderall badk facing shadev meshtrianglesgeneratedy |, decie-
mentingthe stencilvaluewhenpassinghe z-test.

25

(d) Re-enablevriting to color-buffer, setz-huffer testto equal,setstencil
testto passwhenvalueis 0 andenableadditive blending.

(e) Rendetthescenewith only diffuseandspeculatighting from 1.

This is a simple extensionof the algorithmon page24. After the rst pass,
which Il the z-buffer, we loop over all lights in the scene.Sincethe shadeved
areador onelight is completelyindependentrom thoseof otherlights we must
clear the stencil buffer before eachlight pass,which then proceedsexactly as
previously de ned. Theadditive blendingensureshatwe endup with the sumof
thelight contributionsfrom eachlight plusthe ambientandemissve light.

3.3 Improving stencil shadows

The stencilshadev algorithm,asdescribedabore, is easyto implementand by
usingthe stencilbuffer it canbe hardware-acceleratedndis thereforequitefast.
Unfortunatelyit hasavery seriousdravback,whichlimited its usein applications
for years:it doesnotwork whentheeye pointis inside,or very closeto, ashadev
volumesincethe volumewill be cut openby the nearclip plane,resultingin the
view raysmissingashadav-volumeentry Wewill now describenow to overcome
this problemalongwith someoptimizationsfor thealgorithm.

3.3.1 Carmacksreverse

In 2000Carmacksuggested[CarQ@slightly differentapproactwhichentailsthat
theview raysaretracedromin nity towardstheeye, stoppingwhenencountering
the pixel on the geometrythat is closestto the eye. This reversalof the view
rays' direction hasgiven the algorithm the nameCarmads reverse The two
differentapproachebave alsobeennamedzpassandzfail, asthe stencilbuffer in
the original algorithmis changednly whena fragmentpasseghe z-test. As we
will shav below, Carmackgeversecanbe implementedoy changingthe stencil
valuesonly whenthe z-testfails for the fragment,i.e. by usingthe z-fail stencil
operation.

Whenusing zfail the shadev meshmustbe closedin both top and bottom.
Figure3.6 shavstwo caseswvherethelack of atop andbottomin ashadev mesh
would resultin incorrectshadav countfor the shavn pixels. In the leftmostpart
we seeanexamplewherethereversedview ray entersheshadav volumethrough
the missingbottomandthereforefails to counta shadev entry Thefragmentwill
thereforebe shadedasif it wasaffectedby thelight, eventhoughit is clearlyin
shadaev. In therightmostpartof the gure, we seethereversedview ray entering
the shadev volumethroughthe sidesandthereforecountingan entry correctly

26

Theray thenproceedshroughthe shadev castingobject,whichis exactly where
the top of the shadev meshoughtto be andthe ray thereforefails to countan
exit. Theshadov-castingobjectwill thereforealwaysappeato bein shadev and
eventheareasf the objectfacingthelight will be shadeved,whichis obviously
wrong.

o i L&

Figure3.6: Lack of top andbottomin theshadev mesh

Generatingherequiredtop andbottom'cap’ for a generaimeshcanbe com-
plicated,but assuminga closed meshit is muchsimpler For a closedmeshwe
canusethefront facingtriangles,asseenfrom thelight, asthetop cap. The bot-
tom capcanthenbe generatedrom the backfacingtrianglesby extruding them
away from thelight, asdescribedn section3.2.1.Sincethemeshis assumedo be
closed,all edgeshave exactly two trianglesconnectedo it. The silhouetteedges
arethereforethosewhosetriangleshave differentfacingswith regardto thelight.
From the abore we know that the back facingtriangle hasbeenextrudedaway
from the front facingone, tearingopenthe mesh. To closethe shadev meshwe
inserta quadat every silhouetteedgeconnectinghe top, which is in its original
position,andthe bottom,whichis now atin nity .

Giventheclosedshadev meshwe canimplementhezfail algorithmby using
the stepsdescribedn page24 with afew changesWhenrenderingfront facing
triangleswe decementhestencilvaluewhenafragmentails thez-testandwhen
renderingoackfacingtriangleswe incrementhe stencilvaluewhenthefragment
fails the z-test. Thisimplementghetracingof aline from in nity towardstheeye
sinceall shadev meshtrianglesbehindthevisible geometrynow affectthe stencil
valuesandsincethosetrianglesthatarebackfacingto the view positionarenow
front facingto theview ray.

Assigninga vertex a positionat in nity is not a problem,we simply useho-
mogenougoordinatesaandsetthe w componenbf the vertex to zero. However,

6Whatwe actuallyneed,is thateachedgein the meshis connectedo exactly two triangles,
but this is the sameashaving the intuitive propertyof beingclosed: Thereis an'inside' andan
‘outside’ of the objectand we cannotmove betweenthem without passingthroughone of the
triangles.

27

with a regular projectionmatrix thoseverticeswould be clipped by the far clip

planeandin this caseit would meanthatthe bottomof the closedshadev mesh
would be clippedaway, resultingin thereversedview ray missinga shadaev vol-

umeentry Thereareat leastthreewaysto correctthis problem. As Everitt and
Kilgaard suggest[EKOR it is possibleto createa projectionmatrix which places
thefar planeatin nity , meaningthatit will never clip ary triangles.In the same
paperthey suggestthe use of depthclamping which achieses the samething

without usinga specialprojectionmatrix.

The third solution to the problemis to usean extrusion distancelessthan
in nity . The extrusiondistanceis the distancethe verticesof the bottom cap of
the shadeov meshare extrudedaway from the light. We can usean extrusion
distancewhich placesthe bottomof the shadev meshsofar awvay from the light
thatthe contrikution from the light behindthe bottomis zeroor negligible. This
makes sensefor attenuatedight sourcesvhoselight contribution decreasavith
increasingdistance.Directionallights on the otherhand,which areconceptually
locatedatin nity , areof coursenotattenuatedndasaresult,it is hardto calculate
an extrusiondistancethat is guaranteedo be big enough. Even for attenuated
pointlightsit is easyto constructcasesvhereary nite extrusiondistances too
short.

In gure 3.7weseealight sourceashadav castingobjectandthecorrespond-
ing shadev mesh.The sphereof in uence is the distancebeyondwhich the light
doesnotaffecttheshadingof afragment.Theextrusiondistancehasbeenchosen
sotheverticesareoutsidethe sphereof in uence but the shadev meshstill leaves
anon-shadwedregion, whichis lit by thelight althoughit shouldnotbe. Choos-
ing ary nite, (and x ed),extrusiondistancene seethatit is possibleto movethe
light socloseto the shadaev castingobjectthatwe still have a non-shadwedre-
gion. Of courseit is possibleto calculatethe requiredextrusiondistanceor each
case put thisrequireshatwe, at eachvertex, have informationaboutall triangles
whichthevertex is partof. This complicatesanotherwisevery simplealgorithm,
and moreimportantly this informationis not availablein a vertex shader This
implies,thatvertex shadershadev volumes,aswill bedescribedn section3.3.3,
cannotbeused.

By choosinga large extrusiondistanceit is also possibleto make a shadev
meshbig enoughto be clippedby thefar plane.This would thenrequireusto use
eitherafarplaneatin nity orthedepthclampapproactanyway. The nite extru-
siondistancesolutionis thereforenotwithout problemsbut thereis oneaspecthat
malkesit interesting:performanceMakingtheshadev volumesmallermeanghat
its projectedscreersizewill alsobe smallerwhich reduceshe numberof stencil
operations.This canhave a signi cant impacton performance Furthermorethe

"Depthclampingis currentlyonly availablein OpenGLusingtheNV_depth_clampxtension

28

Light's sphere
of influence

Extruded /7 *\ Extruded
vertex vertex

Non-shadowed region

Figure3.7: Shadev meshextrusiondistance.

artifactsintroducedareusuallynot very obvioussincethenon-shadwedregionis
usuallysmallandin anareawherethelight hasbeenattenuatedoits contribution
is negligible.

Thechangedo the original algorithmdescribedabove enablecorrectshadav
calculationwhenthe eye is insidea shadev volumeandis actuallya very robust
andpracticalalgorithm. The extra costincurredby the addedtop andbottom of
theshadev volumeis well spentin mostapplications.

3.3.2 Two-sidedstenciltesting

Anotherchangeto the algorithmis the useof two-sidedstenciltesting. This is
a new featurein recentGPUsthat allows the applicationprogrammeito setup
and usedifferent stencil statesand operationsfor back facing and front facing
trianglesrespectrely. With this functionality it is possibleto exchangesteps4
and>5 of thealgorithmon page24 with a singlestepthatrendersall trianglesjust
onetime, without arny orientationbasedculling. The GPU thendecideswhich
trianglesarefront andbackfacinganduseshecorrectstenciltestsandoperations
accordingto the orientation. This reduceghe CPU load of issuingrendercalls
to the driver, reduceghe amountof verticesthat have to be transformedhrough
a vertex shaderandreduceghe amountof meshdatathat hasto be sentto the
graphicscardoverthe AGP bus. Thenetresultis asigni cant performancegain.

3.3.3 Vertex shadercalculation of shadav mesh

With theadditionof programmableertex shadefunctionalityanothersigni cant
changeto the algorithmis possible. The calculationof the shadev meshcanbe
moved from the CPU to the GPU, which of courselifts a burdenfrom the CPU
but, moreimportantly it alsomeanghatthe shadev meshdatacanbe sentto the

8Firstproposedn [EK02]

29

GPU onceinsteadof every frame aswas previously necessady The ideais to
give the GPUa copy of theshadaev castingmesh but onewhereit is possiblefor

every edgeto stretchandbecomea quadon the sideof the shadev mesh.Thisis

accomplishedby insertinga quadof zerowidth betweerevery edgeof the mesh.
Figure3.8shavsfourtrianglesandhow theedgedetweerthemarereplacedvith

quads.Theleftmostpictureshowns the original triangles.In themiddle pictureall

edgeshave beenreplacedvith quadswhich shouldbe of zerowidth but sincethat
represensomevisualizationdif culties we have shovn themstretcheda bit. In

the rightmostpicture, we seethe leftmosttriangle extrudeda bit away from the
others. The quadsborderingthis triangle have beenstretchedaccordinglywhile

all the othershave zerowidth andarethereforenvisible.

Figure3.8: Vertex shadeishadev mesh.

Sincea vertex shadercalculateshe projected-spacpositionof a vertex, the
vertex shadercantake all the pointsbelongingto backfacingtriangles,(asseen
from the light), and extrudethemaway from the light. All pointsbelongingto
front facingtrianglesareprojectedo their usualpositions.To determinewvhether
a point belongsto a front or backfacingtriangle the vertex shadermustknow
thefacenormalof the correspondingriangle. This is necessargincethe shader
cannotaccesghe other points that constitutethe triangle and thereforecannot
calculatethe normalitself. This is not a problemasthe facenormalis simply
storedin thevertex datain thesamemanneraswhenusingthenormalto calculate
lighting. For the edgeghat containquadswhich arenot stretchedthe quadwill
still have zerowidth and thereforecovers no pixels and contributesnothing to
theshadaev calculation.Section6.5 shawvs the vertex shadercodefor extrudinga
mesh.

The only problemwith this approachis that the numberof trianglesin the
shadev meshgrows alot. We will now analyzeexactly how much. A triangleis
boundedoy exactly threeedgesand,sincethe meshis closed,anedgeis incident
to exactly two faces.Thereforea singleedge'generatestwo timesonethird of a
face.Assumingt is thenumberof trianglesande the numberof edgeswve have:

2e 3
t= — e= —t
3) 2
9As long asameshis unchangedhe graphicscardcancachet in AGPmemory but to change
it theapplicationhasto modify a versionin systemmemoryanduploadit again.

30

A VS shadev mesH? containstwo new trianglesfor eachedgeplus the orig-
inal triangles. Sothe numberof trianglesin the shadev meshtPis relatedto the
original numberof trianglesas:

= t+2e=t+ th:4t

The shadev meshmustalsocontainnew vertices. In fact, the original trian-
glescanno longershareverticessinceit mustbe possiblefor eachof themto be
extrudedseparatelyThequadshowever, sharegheverticeswith thetrianglesthey
separatehencethe numberof verticesin theshadev meshv®is:

Vo= 3t

The numberof verticesin the original meshcanbe calculatedfrom Euler's
formula,which stateghat:

Vv e+t=2
sowe have that:
3 1
vV —t+t=2() v=2+=t () t=2v 2
2 2
andtherefore:
V=3t=3 2(v 2)=6v 12

This meanghattherearefour timesasmary trianglesandaboutsix timesas
mary verticesin a VS shadav meshasin the original mesh.Of coursea regular
CPU-calculateghadev meshalsohasadditionaltriangles putaVS volumeis the
'worst-casescenario'.However, giventhe performancecharacteristicef current
GPUswherevertex processings cheapcomparedo sendingdatafrom the CPUto
theGPU,theVS shadaev volumesstill performsbetterthanregularCPUvolumes.
The table belov shavs performanceneasurements FPSfor the screen-shots
showvnin gures B.1to B.4:

Location| CPUvolumes| VS volumes| Difference
B.1 7.5 18.5 146%
B.2 24.0 335 39%
B.3 14.0 61.0 335%
B.4 38.0 39.0 3%

10vertex shadeshadev mesh.
"The testwas carried out on a 900MHz AMD Athlon with an ATI Radeon9700Proin a
1024x768esolutionwith perpixel lighting.

31

As is seenin thetable,the performancalifferencevariesa lot: from almost
nothingto a four timesincrease.This is the resultof the numberof shadev vol-
umesin thefour sceneslin scenewith very few shadev volumesthework load
introducedoy eithermethods sosmallthatthedifferencan performances mim-
imal. Thisis thecasein thefourth locationin thetableabove. Butin scenewith
lots of shadev volumes(animatedvolumesin particular)the VS volumeslead
to greatperformancegainsdueto the fact that they neednot be calculatedand
transferredo the graphicscardevery frame.

3.4 The single-passstencil shadow algorithm

The stencilshadaev algorithmdescribedn page25is the'correct' versionof the
algorithmin the sensehatit addscontribtutionsfrom a light sourceto afragment
only if thatfragmentis notin shadev from thelight. Thisimpliesthatthe algo-
rithm mustrenderthe sceneonetime for eachlight-sourcé?. Thereexistsanother
algorithmt® which renderghe sceneonly once.It canbedescribedhs:

1. Clearcolor-buffer, z-buffer andstencil-tuffer.

2. Rendetthe scenewith all lights enabled.

3. Disablewriting to color-buffer andz-buffer, enablestencil-tuffer.
4

. Rendenall frontfacingshadav meshtrianglesfrom all lights, incrementing
the stencilvaluewhenpassinghe z-test.

5. Rendenall badk facingshadev meshtrianglesfrom all lights, decementing
the stencilvaluewhenpassinghe z-test.

6. Re-enablewriting to color-buffer, disablez-buffer test, set stenciltestto
passwhenvalueis lessthan0 andsetadditive blending.

7. Renderadarkfull-screenoverlay

This algorithm rst identi es all thoseareason the screerthatarein shadev
from one or more light sources,andit then darkenstheseareasby a constant
amountasa postprocesslt is usuallyreferredto asthesingle-passtencilshadav
algorithmwhile the otherversionis often calledthe multi-passstencilshadav al-
gorithm. Note thatthe improvementsdescribecdearlier (Carmackgeverse,two-
sidedstenciletc.), concernhow we nd shadeved areasfrom a particularlight

12Thisis not completelycorrect,seesection5.4for optimizations.
13We have beenunableto nd theinventorof thealgorithm.

32

source. Theseimprovementsarevalid for both algorithmssincethe distinction
betweenthe single-passand multi-passalgorithmis how we usethe shadev in-
formation.

The multi-passalgorithm identi es the areaswhich are in shadev before
addingthe contribution from a light-source. The single-passlgorithm approx-
imatesthis by addingthe contribution from light-sourcesboth in shadeved and
non-shadwed areasand later compensate$or this by subtractinga constant
amountof light from the shadeved areas.The multi-passalgorithmis obviously
themostcorrectof thetwo asthesingle-passlgorithmassumeshatthe contritu-
tion from all light-sourcego all fragmentss a constantwhich cansubsequently
be removed by subtractions.This assumptionis wrong for several reasonsdif-
ferentlight sourcesanhave differentcolors,light sourcesareusuallyattenuated,
shadaevs from differentlight-sourcesanoverlapeachother etc. All thesefactors
contritute to a bad approximation,whereshadaevs tendto look unnatural. See

gure B.7 for acomparisorof thetwo techniques.

Notice that the single-passenderinghasa constantcoloredshadav region,
coveringall pixelsthatarein shadev from atleastonelight source(but not nec-
essarilyboth). As a consequencthe sidesof the box aredarkened,eventhough
a light shinesdirectly on both of them. Anotherproblemis that the shadaev is
constantcolored. Wherethe two shadavs from the barrelcrossthereshouldbe
a darker area,sincenoneof the lights affect this region. Using the multi-pass
algorithmall theseproblemshave beenrecti ed.

The only redeemingpropertyof the single-passlgorithmis the performance
characteristicsThe single-passlgorithmrendersthe sceneonce,andfor every
fragmentit calculateghelight modelfor all the lights. The multi-passalgorithm
renderghesceneoncefor everylight source gachtime calculatingthelight model
for a singlelight only. This meanghatthe single-pas®nly calculateghetrans-
formationand projectionof verticesonce,whereaghe multi-passdoesthis for
every light. Both algorithmscalculatethe light model approximatelythe same
numberof times. Sincevertex processingvasa limiting factoron older systems
multi-passwasvery expensve. Currenthardware,however, hasrelatively higher
vertex processingpower andthe useof multi-passs thereforepossible.We have
collectedperformancenumberdor both algorithmson the scenesyiewedin the
screen-shoti gures B.1to B.4. Thetablebelov shavstheresults®. Thesec-
ondandthird columnshav thenumberof FPSfor thetwo algorithms andthelast
columnshows the performancalropwhengoingfrom singleto multi-pass.

The experimentwas performedon a 900MHz AMD Athlon with an ATI Radeon9700Pro
GPUwith pervertex lighting.

33

Location| Single-pass Multi-pass| difference
B.1 20.0 18.5 8%
B.2 36.0 28.5 21%
B.3 75.0 61.0 19%
B.4 50.0 43.0 14%

As the table shaws thereis a performancepenaltyfor usingthe multi-pass
algorithm,thesemeasurementsuggestabout15%. However, the performance
is extremely dependenbn the amountof optimizationfor both algorithms,and
thesenumbersarethereforevalid only for our enginein its currentversion. But
the numbersdo show thatit is possibleto usethe multi-passalgorithmin a full-
edged gameengine,andwe are corvincedthatthe increasan visual quality is
well worth the performancepenalty

3.5 Approximationsto the rendering equation

As describedn section2.1.2,the renderingequationcansenre asa standardor
otherlight modelsto be measuredgainst.Equation2.5 is the formulationmost
suitedfor this purpose.In this sectionwe will examinehow the standardighting
modeldescribedn section2.2.4andthe singleandmulti-passshadev algorithms
describedabove canbe seenas approximationsf this equation. The rendering
equationis formulatedat a very high level of abstractiongiving us a compact
descriptionof alighting modelwhich capturesonly the essentiaklementsin the
descriptionbelov we will link the equationgo the moreimplementation-minded
descriptiongivenabove.

The standardighting modelin real-timeapplicationsdescribedn section2.2
canbeformulatedin the spirit of therenderingequatioras:

L = VOLe+ VOTLeO

The rst addendis the direct light from a point, i.e. the light re ected zero
times. If we look at equation2.6, L . correspond$o the Xemission @andthe global
ambientterm. Thevisibility functionvy is the hiddensurfaceremoval calculated
by thez-buffer. Thezerosubscripimeanghatit is thevisibility for thelastre ec-
tion of light, i.e. it is thevisibility betweerfragmentsaandthe camera.

The secondaddendis the light re ected onetime. vj still operateson this
factor otherwisewe would seelight re ected off fragmentswhich the z-buffer
hasdeterminedto be invisible. L, is the emittedlight, but the zero subscript
meansthat we allow only point light source®®. The T operatoris thereforenot

Sysuallyonly a x ednumberof lights areallowed. The x edfunctionpipelineallows eight.

34

anintegral, asin the renderingequation but simply a sumover the contribution
from theselight-sourceswvhich corresponds$o the sumoverthe N light sources
in equation2.6. Notethatthere ectedtermis missingavisibility operatomwhich
would otherwisemakeit voTv;L¢,, Wherev, is thevisibility functionfor thenext-
to-lastre ection of light. The standardighting modeldoesnotincludethisterm,
which meanao shadavs arecalculated.
Thesingle-passilgorithmcanbeformulatedas:

L=vwvlet+ VvwTLe, (1 wK

whereK is a constanthatdeterminesow 'dark’ shadavs are. It resembles
the standardighting algorithm,the only differencebeingthe subtractiorof acon-
stantwherethereis 'shadev’. The shadeved regions are determinedoy the v
function which approximateghe true v, function. If v is zero,(andl 1w is
one),we 'darken’' the fragmentby subtractinga certainamountof light. The v
functionis calculatedby the stencilbuffer asdescribedn section3.4,andtherea-
sonthatit is anapproximations thatit computewisibility for all light sourcesn
asinglepass.This approximatioris wrongsinceit entailsthatafragmentwill be
darkenedby the sameamountregardlessof how mary light sourceshat cannot
affectit becausef shadev. As describedabove this resultsin shadevs thatare
notablydifferentfrom the correctshadavs of the multi-passalgorithm.

The multi-passstencilshadev algorithm canbe formulatedin the following
way:

L = voLe+ VoTVlLe0

Sincethe multi-passalgorithmcalculatesvisibility for eachlight sourcesepa-
rately, thevisibility functionfor re ectedlight is thereforethe'true’ v, function.
This is the essencef the differencesbetweenthe single- and multi-passalgo-
rithms: the single-passisesthe stencilbuffer onceto calculatean approximate
visibility for all light sourcesn onepasswhereaghe multi-passusesthe stencil
buffer oncefor eachlight, calculatingthe true visibility functioneachtime. The
multi-passalgorithmis thereforea good approximatiorto the rst two termsof
the renderingequation. The only restrictionsare, that light sourcesareonly al-
lowedto be pointsandthat,for performanceeasonswe canonly handlea small
numberof them.

The soft shadaev algorithmwill allow a betterapproximation,althoughthe
differencen this formulationseemsmall:

L = wvobe+ VoTVvile,

whereL,, meang(a few) sphericallight sourceswith individual radii. This
extensionto sphericalvolumelights meanghatwe now considerin nitely mary

35

points aslight emitters. However the points must be locatedon the surface of
spheresgeachsphereconceptuallybeinga singlelight source. Sincea visibility
functionis evaluatedor every pointonthelight sourcetheresultis soft shadavs.
In practicea singlevisibility function for the entirelight sphereis implemented
giving a percentagealuerepresentindhow muchof the conceptualight source
is visible from the light-receving point. An algorithmthat implementsthis is
describedn chapter4.

36

Chapter 4

Soft shadows

The shadavs generatedby the techniqueglescribedn the previous chapterhave
one aw in common:they arehard. Thetransitionfrom light to shadev happens
over justtwo pixels: oneis fully lit by thelight sourcethenext is in full shadov.
This is notdueto a aw in the calculationsassuch,but is a consequencef the
limitation of the techniqueslight sourcesmustbe pointsandonly directillumi-
nationis calculated Realworld shadavs areusuallysoftwith a smoothtransition
from full light to full shadev. This happengor two reasonsindirectillumination
andvolumelight sourcesgxactly whatthe previous algorithmscould not incor-
porate. Light sourceswith a non-zerovolume causesoft shadavs becauseahere
arepointswherea part of thelight is visible, this is calledthe penumbraegion
andis illustratedin gure 4.1. The areawherenothingof thelight is visible and
thegeometnyis in full shadev is calledtheumbraregion.

Spherical light source

Shadow caster

Penumbra

Figure4.1: Volumelight sourceproducepenumbraegions.

Indirectillumination alsotendsto 'softenup’ a shadev. Thisis illustratedin

37

gure 4.2, wherethe dashedinesrepresentndirectillumination which bounces
off thewall andinto the umbraregion. Differentareasof the umbrawill receve

differentamountsof indirectillumination. In mostcasegshe intensity of there-

cewvedindirectlight will grow wealerwhenmoving from anareaneartheshadav

boundaryto an areafurther away from it, andthe shadev will thusappearess
hard.

point light

Shadow caster

Shadow border

Indirect illumination

Figure4.2: Indirectillumination 'softens'anotherwisehardshadav.

Simulatingfull globalillumination, includingtheindirectillumination shavn
above, is very hardto do in real-timebut, aswe shall seein the following, it is
possibleto rendershadavs from volumelights to producesoft shadavs.

Our work with soft shadevs hasbeenbasedmainly on a seriesof articles,
[AMAOQ02], [AAM03] and[ADMAMO3], in which theauthorsrst suggesteéand
later re ned and implementeda techniquefor renderingsoft shadaevs from ar
bitrary shadev castersonto arbitrary surfaceswith real-timeperformanceausing
pixel shadersWhenwe beganour researctonly the rst of the threepapershad
beenpublishedand, as a result, our own implementationdiffers from theirson
severalkey points.On our own, we did comeup with someof the sameimprove-
mentsandimplementatiortechniqueghatthey suggestedh the laterpapersand
we interpretthis asanindicationthattheideasandtechniquesaresound.

We have alsodevelopedsereral new optimizationswhich greatlyreducethe
length of the requiredpixel shadersthe numberof renderingcalls madeto the
graphicsdriver, and the amountof texture memoryrequiredfor look-up tables
usedin theshaders.

In this chapterwe rst describethe soft shadev techniqueasit appearsn
its nal incarnationsetforth by Akenine-MdllerandAssarssoin [ADMAMO3].
Thenwe describeour optimizationsand discusstheir impacton the overall per
formanceof thetechnique Finally, we discussa numberof problemsthatremain
unsoheddueto hardwarelimitations.

38

4.1 Softshadowsusing penumbra wedges

Thehardshadev algorithm,asdescribedn section3.2, usesthe stencilbuffer to
maskout thoseregions of the screenthatarein shadev. The problemwith this
approachis thatthe stencilbuffer givesa sortof on/off write mask:eithera pixel
is renderedvith full lighting or it is skippedentirely. To rendersoft shadevs we
mustinsteadmodulateeachpixel with a light intensityfactor that rangesfrom
zero,whenthepixelisin full shadev, to one,whenit is fully lit. Sothemaingoal
of thesoftshadaev algorithmis to ef ciently calculateascreersizedlight intensity
buffer, from now on referredto asthe LI buffer, asdescribedn [AMA02]. Once
the Ll buffer hasbeencalculatedhe scenes renderedwith diffuseandspecular
lighting, with eachpixel beingmodulatedby the corresponding/aluein the LI
buffer. In a nal passambientlighting is addedto all pixelsin theimage.In the
following we will assumeéhatonly oneobjectcastsa shadav from thelight.

4.1.1 Overview

As describedn [AAMO3], the soft shadaev algorithmis an extensionof the stan-
dardstencilshadaev algorithm,andthe calculationof the LI buffer startsby clear
ing it to one, indicatingthatall pixels arefully lit by thelight. Next, the hard
shadaev for the objectis renderednto the buffer in the usualway, settingthe in-
tensityto zerofor all pixelsthat areinsidethe hardshadaev. After this step,if
we usedthe LI buffer to modulatethe lighting without ary further processing,
theresultwould be hardshadevs identicalto thoseproducedoy usingthe stencil
buffer.

Hard shadow

Outer penumbra Inner penumbra

Figure4.3: Thehardshadav splitsthe penumbra

As seenn gure 4.3thehardshadav splitsthe penumbraegioninto aninner

39

and outer penumbraandthe ideais now to 'softenup’ the shadav aroundthis
hardshadev edge.In theinnerpenumbraegion we mustaddlight to compensate
for thehardshadav algorithmwhich hassettheintensityto zero,eventhoughthe
pixelscan'see'up to half of thelight at the hardshadev edge. Similarly, in the
outerpenumbraegion we mustsubtractight from thosepixelsthe hardshadev
algorithmhasdeemedully lit, eventhoughsomeof themcan'see'aslittle ashalf
thelight. Eventuallywe would lik e to endup with agradientthatdecreasefom
1 onthe outsideof the shadev to O whenit entersthe umbraregion. At the hard
shadav edgewe shouldhave anintensityof 0.5, asthisindicatesheborderwhere
exactly half thelight is visible.

This adjustmentof the LI buffer is madeusing pixel shadersand a special
renderingprimitive calleda penumba wedg, (from now on referredto asjust
awedg), asdescribedn [AMAO2]. A wedgeis createdfor eachedgeon the
shadav silhouetteandis a closedpiece of geometryconstructedo boundthe
penumbraegion generatedby thatparticularedge.By renderinghewedgeswith
a specialpixel shaderwe areableto adjustthe LI buffer asrequiredto softenup
the hardedge. We will cover exactly how this is donein a later subsectionbut

rst we describehewedgeandits creationin moredetail.

4.1.2 Wedgecreation

Figure4.4: Hyperbolicpenumbravolumefor a sphericalight source.

Theexactpenumbraegion for a givenedgeandlight sourcecanbefound by
sweepinga generalconefrom onevertex of the edgeto the other The coneis
generatedy re ecting the light sourcethroughthe sweepingpoint on the edge.
It is not feasibleto calculatethe exact penumbravolumein real-time,nor is it

40

necessaryaswe shall seelater. It is worth noticing that, assuminga spherical
light sourcetheexactpenumbravolumewill generallyhave hyperbolicsides(see
gure 4.4),whichalsomalkesit unsuitabldor tessellationnto triangles,aprocess
thatwould be requiredto renderthe volume. Instead the wedgeis createdasa

boundingvolume for the penumbraregion and a robust methodfor calculating
thisis presentedn [AAMO3].

The wedgeis generatedsfollows: let a silhouetteedgee be de ned by the
two verticesey ande;. Firstit is determinedvhich of the two verticesis closest
to the centerof thelight; assumehatthisis 5. Thenthe otherone, ey, is moved
towardsthe centerof thelight until the distanceo the centeris the samefor both
vertices.We denotethis new vertex €9. Thetwo vertices,g, ande?, de ne anew
edge,e®, above the original silhouetteedgewhich will be usedasthe top of the
wedgestructure.Note thatthis new edgeis only usedfor rasterizatiorpurposes.
Theoriginalsilhouetteedgeis still usedfor theactualvisibility calculationsn the
pixel shaderaswe shallseelater Now, becausdothendpointof e®arethesame
distancefrom thelight, the sweptconefrom e, to €2 will generatelanarfront and
backsidesfor the wedgeand,becauseve choseto keepthe closestvertex x ed,
thewedgewill fully containthe penumbraegion, see gure 4.5.

Ratherthanactuallysweepinga coneover €°, the front andbackplanesof the
wedgeare calculatedby rotating the hard shadav planearounde® so it exactly
toucheghelight sourceon the otherside. The planesfor the left andright sides
of thewedgearecalculatedn a similar way by rotatinga planearoundaxesthat
areperpendiculato €. Theintersectiorof thesefour planesalongwith a bottom
planesome x ed distanceaway from thelight, createsa closedhull: the wedge,
illustratedin gure 4.6. Notice how the wedgestructurefully containsthe actual
penumbrasolumeassweptover the original silhouetteedge.

4.1.3 Culling away unnecessaryfragments

A wedgeis a 3d primitive andwhenseenn perspectie from theside,therender

ing of its front facingtriangleswill triggerthe pixel shadeirfor morepixelsthan
thoseactuallyresidingwithin the penumbraegion onthe screen.Thegreaterthe
anglebetweertheview directionandthelight-to-edgedirectionis, thegreateithe
amountof wastedpixelswill be. However, usingthe stencilbuffer it is possible
to cull avay mostof thoseunnecessarpixels,asdescribedn [ADMAMO3]. An

importantobsenation hereis that, asthe penumbrdies on the geometryof the
scene;t is only necessaryo executethe pixel shademnwherethe wedgevolume
intersectghe scenggeometry To maskout this areathefront facesof thewedge
arerenderednto the stencilbuffer, settingthe stencilvalueto 1 wherethe pixels
passthe z-test. This masksout the grey areaseenin the upperleft partof gure

4.7. To actuallyexecutethe pixel shadeiin theintersectiorregion, the backfaces

41

Figure4.5: Planarfront andbacksidesof penumbrasolume.

wedge top
- wedge top
/ right plane
front plane back plane left plane
/ N /

Side view Front view

front side

right side

Figure4.6: Generatiorof awedge.

42

of the wedgearerenderedwith the z-testsetto 'greater’, andthe stencil buffer

con gured to only drav wherethe stencilvalueis 1. Renderingthe backfaces
with this z-testis the sameasrenderinghosepixelson the backfaceshatfail the

ordinaryz-test,asshowvn in theupperright partof gure 4.7,andby enablingthe

stencilbuffer we have effectively masled out the intersectiorof the two regions.
As aresult,the pixel shadelis only executedwherethe wedgeintersectghe ge-

ometry asshowvn in the bottompart of the gure. Note that asthe wedgedoes
not representhe exact penumbravolume, the pixel shadercanstill be executed
for pixelsoutsidethepenumbraegionandcaremustbetakento leave suchpixels

unchanged.

Front faces that passes z-test

Backfaces that fails z-test

Intersection area

Figure4.7: Maskingouttheintersectiorbetweera wedgeandthe scene.

4.1.4 Modifying the LI buffer

To modify the LI buffer we mustsomehav calculatethe light visibility factor
for eachfragmentof the scenegeometrythat falls within the penumbraregion.
The rst thingswe needfor this calculationarethe positionof the fragment,the
silhouetteedgeand the light in somecommonspace. As the light positionis
x edfor all fragmentsn a particularframe,we caneasilyuploadit asa constant
to the pixel shaderin any spacewe want. The positionsof the verticesof the
edgearealso x edfor anentirewedgeandcaneitherbe calculatedn the vertex

43

shaderor, if the wedgesarerenderedneat atime, be uploadedasconstantdo
the pixel shaderin the spacewe want. Therefore,the challengelies in nding
the position of the scenefragmentbehindthe wedgefragmentcurrently being
shadedjn any space.For technicalandperformanceaeasonsve have choserto
dothecalculationsn view-spaceput [ADMAMO3] presents solutionwherethe
calculationsare donein world-spacenstead. In view-space the positionof the
scenefragmentbehinda certainfragmenton the wedgeis formed asthe tuple,
(x;y; 2), wherex andy arethe sameasfor the wedgefragmentpositionandz is
the depthvaluestoredin the z-buffer. See gure 4.8. Onceall thesepositionsare
knownin view-spaceit is possibleto calculateavisibility factorfor thefragment,
aswe shallseein thefollowing.

View space origin Rasterized wedge fragment

Geometry position

Scene geometry

Figure4.8: Calculatinggeometrypositionbehindwedge.

To calculatehow much of the light is visible from a particularfragmentin
the penumbrawith respecto just a single silhouetteedge,we projectthe hard
shadev quadup ontothelight, asseenfrom the fragment.Assuminga spherical
light source,this is the sameas rst projectingthe edgeonto a circle andthen
tracinglines from the centerof the circle througheachprojectededgevertex. A
coverage value cannow be de ned asthe percentagef the light sourcethatis
coveredby this projection,andit is simply calculatedasthe areacoveredby the
projectiondividedby thetotal areaof thelight circle. See gure 4.9for examples
of this projection.

Noticethatfor any fragmentwithin the penumbraregion this coveragevalue
will lie betweerD and0.5, being0.5for fragmentson the hardshadaev edge.For
fragmentsn the outerpenumbraegion the coveragevaluede nes how muchof
thelight sources hiddenby theoccludinggeometrywhile, in theinnerpenumbra
region, it actuallyde neshow muchof thelight is visiblefrom thefragment.This
meansthat the coveragevalue canbe usedto modify the LI buffer to createthe

44

a) both vertices outside light source b) one vertex inside light source

Figure4.9: Projectingthe hardquadontothelight source.

gradient. In the outerpenumbrahe coveragevaluede nes how muchlight that
needsto be subtractedand,in the inner penumbrajt de nes how muchlight to
add.See gure 4.10.

Coverage to gradient

N

LI buffer LI buffer

oD dodos pios
Subtract light ~ Add light

Coverage:

Figure4.10: Modifying the Ll buffer basedn coverage.

4.1.5 Summingup coveragecontributions

Until now, we have only considered singlesilhouetteedgewhencalculatingthe
coveragevaluefor afragment.In reality, the silhouetteform loops, (see[Ass03
pp. 133-135),and,to properly calculatethe nal coveragefor a fragment,it is
necessaryo projecttheentiresilnouetteontothelight source.Thisis unfortunate

45

since,asdescribecdearlier the pixel shadercannotaccessary otherinformation
thanwhatis givento it throughconstantegistersandtherasterizerThis makesit

impossiblefor the pixel shadeto have anything morethanlocal knowledgeof the
silhouette Fortunatelywe canuseGreens theoremasdescribedn [AAMO03], to
calculatethe nal coverageasasumof coveragecontrikutions,evaluatedat one
silhouetteedgeat atime. To addor subtracteachcontribution, whenevaluating
Greenstheoremjs basednthefragmentgositionin thepenumbrai.e. whether
light shouldbe addedor subtractedsdescribecabove. As the penumbraegions
for neighboringsilhouetteedgeswill overlapin anareaaroundthe sharededge
vertex, the pixel shademwill be executedmultiple timesfor eachfragmentin that
part of the penumbraregion, (onetime for eachedge). As a result, after all the
wedgeshave beenrasterizedhe nal coveragevalueis available asthe sum of

the contributions. Referto gure 4.11for two examplesof how to calculatethe
nal coveragewith Greenstheorem.n the rst example,oneedgeis front facing
to the fragmentwhile anotheris backfacing. This meanghatthe fragmentis in

the outerpenumbraegion of the rst edgeandin the inner penumbraegion for

the other Coveragevaluesfor the outerpenumbraareaddedo thetotal coverage
value, while coveragevaluesfor the inner penumbraare subtracted(sincethe
coveragevaluefor fragmentsn theinnerpenumbrale neshow muchof thelight

is visible insteadof how muchis covered).In thesecondexample bothedgesare
front facingto thefragment,sobothareaddedo the nal coveragevalue.

@

a) one positive and one negative coverage contribution

© +

b) two positive coverage contributions

i

Figure4.11: Calculatingcoveragewith Greenstheorem.

4.1.6 Summary

To summarizethe stepsfor creatingthe Ll buffer are:

1. Clearthell buffer to one,indicatingthatevery pixel is fully lit.

46

2. Rendetthehardshadaev into theLl buffer, settingthelight intensityto zero
for pixelsinsidethe hardshadov.

3. For eachsilhouetteedgein the object,createits wedgegeometry

4. Renderthewedgeswith a specialpixel shaderoneatatime, andmaskout
theintersectiorareabetweerthescenggeometryandthewedgeto minimize
theamountof renderedragmentsoutsidethe penumbraegion.

5. For eachwedgefragmentrendered(pixel shadersteps):

(a) Calculatethe view-spaceposition of the scenefragmentbehindthe
wedge.

(b) Determindf thisfragmentis in theinneror outerpenumbraegion.

(c) Projectthe silhouetteedgefor the wedgeup ontothe light source as
seenfrom thefragment.

(d) Calculatea coveragevaluefrom this projection.

(e) Basedon the positionof the fragment,eitheraddor subtractthe cov-
eragevaluefrom theLl buffer.

Theinterestingstepsin the pixel shademarethosewherethe edgeis projected
into the light sourceto calculatethe coveragevalue, andthis is alsowherethe
majority of the pixel shadeinstructionsarespent.We will notgointo ary further
detailson how Akenine-Moéllerand Assarssorcthooseto implementthosesteps,
but theinterestedeadercanreferto their paperdor someimplementatiordetails.
We will insteadfocus on our own implementationand in the next section,we
describehow we have optimizedthosestepso greatlyreducetheamountof pixel
shadeinstructionsandtheamountof texturememoryrequiredfor look-uptables.

Dueto certainhardware problemsandlimitationsit is not possibleto imple-
mentthe algorithmexactly asspeci edin the pseudo-codabove. Like Akenine-
Moller/Assarssonwe have beenforcedto work aroundsomeof thesehardware
limitations. We refrain from mentioningthemin the algorithmoutline above as
they do not affect the basicideain the algorithm,andas someof themwill be
overcomeby newer andbetterhardware. We will discusghe problemsin section
4.3.

4.2 Fast coverage calculation for spherical light
sources

In this sectionwe describeour novel techniquefor highly ef cient coveragecal-
culationfor sphericallight sources.In [ADMAMO03], a techniquefor coverage

47

calculationfor sphericallight sourcess presentedThetechniquerelieson clip-
pingthe projectedsilhouetteedgeto theboundarie®f thelight sourcen thepixel
shaderThetwo clipped2d pointscanbe usedastexture coordinategor alookup
in a 4d texture which implementghe coveragefunction. Using our techniquewe
canavoid theseclipping operationsn the pixel shaderandlet the texture sampler
do the clipping for free. We also reducethe dimensionof the coveragefunc-
tion from 4 to 3, which enablesusto encodethe coveragefunctionin a smaller
texture.In [ADMAMO3] Akenine-Mdller/Assarssoalsopresentoveragecalcu-
lation techniquegor rectangulaandeventexturedrectangulatight-sourcesOur
new techniquecannotbe usedin thesecasessinceit is a fundamentakequire-
mentthatlight-sourcesaresphericalbut for mostapplicationghisis areasonable
limitation.

4.2.1 Unit sphere space

For our coveragecalculationtechniqueto work we needto work in aspacewvhere
the light sourceis not just sphericalbut actuallya unit sphere. This is doneby
applyinga change-of-basimatrix, (from now onreferredto asthe CBM), to the
light position,the silhouetteedgeandthe fragmentposition. This CBM simply
scaleghethreecoordinateaxesin Rz with theinverselight radiusandlookslike
this:

2

1
R
CBM =4 0
0
Becausehe CBM only hasentrieson the diagonal,it canbe reducednto a
scalingof thevectorit is appliedto, like this:
111 1

SRV = 2V (4.2)

This scalingcanbe madein a singleshadeiinstructionperpointthatneedgo
be transformed.And asdescribedabove only the fragmentpositionneedsto be
calculatedn the pixel shaderso the costof working in unit spherespaceis just
asinglepixel shadeiinstruction.In the following we will assumehateverything
hasbeentransformednto unit spherespace.

(4.2)

o7+ O
IO O
OoN W

CBM V = (

4.2.2 Coveragecalculation

To calculatethe coveragevaluefor aspeci ¢ fragmentwe rst calculatetheplane
throughthe silhouetteedgeandthe fragment. This canbe thoughtof asa 'tilted
hardshadaev plane'andwe referto it in thefollowing asthegeoPlane. Next, the

48

signeddistancefrom thelight sourceto the geoPlane is calculatedcall this dis-
tancefor do. If dg 2 [1::1]thentheplaneintersectshelight source andthefrag-
mentis actuallywithin the penumbraegion andnot just insidethe wedge. The
signof dy alsodeterminesvhetherthefragments in theinneror outerpenumbra
region. If dy is positive thefragments in the outerpenumbraif it is negativeit is
in theinnerpenumbralf dy is exactly zerothefragmentlies onthe hardshadav
edge. This classi cation determinesvhetherwe shouldadd or subtractlight to
the LI buffert. Then,thelight sourceis projectedonto the geoPlane to a point
we will call thebasePRoint. Now we cande ne thelightP lane ashaving origin
at the basePoint anda normalin the directionfrom the basePRoint towardsthe
fragment.Theintersectiorbetweerthelight sourceandthelightP lane givesus
the 2d circle onto which we wantto projectthe silhouetteedge,asdescribedn
earliersections.Referto gure 4.12for a 2d sideview of the planesand points
describedabove.

Notethatif we projectthein nite line onwhich the silhouetteedgelies onto
thelight, thenthebasePRoint lies somavhereonthisprojection.In addition,when
we projectthetwo endsof thesilhouetteedgeontothelight they will alsolie onthe
line, eitheron the samesideof thebaseRoint or onepointon eachside.Now we
calculatethe distancegrom the baseRoint to eachof thetwo projectedendsand
denotethemd; andd,. We cancalculatethe coveragevaluegivenfour piecesof
information:theabsolutevalueof dy, thevalueof d; andd,, andwhetherthetwo
projectecendsareonthesamesideof thebaseRoint or not. Figure4.13illustrates
this. Note thatdueto symmetrywe areableto rotatethe original coveragearea
aroundthecircle centeraswell asmirror it aroundthetwo coordinateaxeswithout
changingthe actualcoveragevalue. As a resultof this, we canrepresentry
coverageareaasoneof thetwo formsin the gure. Also notethateventhough
the gure mightindicateit, it is not a requirementhat both or even ary of the
projectedpointsareactuallywithin thelight source.

Eachof the threeparameterfiasvalid valuesonly whenthey arewithin the
range[0::1]. Whend, reached the coveragevaluewill be 0, no matterwhatthe
distanceso theendpointsare,andthesamecanbesaidfor ary valuegreateithan
1. Consequentlyt is safeto simply clampdy to be at maximum1. To calculate
thecoveragevaluethetwo projectedendsare rst clippedagainsthelight source.
As thelight is a unit spherethe maximumvertical distancefrom the baseRoint
to thecircle edgeis 1, andthis only occurswhendg is equalto zero. For all other
valuesof dy, the vertical distancefrom the baseRoint to the circle edgewill be
lessthanone. Soalsothe two otherparametersyd; andd,, canbe clampedto be
within therange[0::1].

1In reality, dueto hardwareissuesanothertechniques currentlyusedfor this classi cation.
We will coverthisin alatersection.

49

- geoPlane

basePoint

"'édge

hard shadow plane lightPlane

fragment being shaded

Figure4.12: ThegeoPlanelightPlaneandbasePoint.

a) End points on different sides b) End points on same side

Figure4.13: Parameterizedoveragecalculations.

50

Assumingthateachparameteties within its valid range we cannow encode
the coveragefunction into two 3d textures: one texture for the casewherethe
pointsareonthesamesideof thebasePRoint; andanotherfor thecasewherethey
areondifferentsides.

Theclampingof thethreetexture coordinatecomponentsouldbedonein the
pixel shadebeforesamplingthelook-uptexture but thatis notnecessaryinstead
we usethe built-in clampingoptionin the texture samplerwhich performsthe
desiredclampingfor free.

To determinewhich of thetwo coveragemapsthe pixel shadeshouldsample,
it calculateghedot productbetweerthetwo vectorsgoingfrom thebaseRoint to
eachof thetwo projectededgepoints. If thetwo pointsareonthesamesideof the
basePoint, theanglebetweerthesetwo vectorswill bezeroandthereforethedot
productwill bepositive. If, ontheotherhand thetwo pointsareon differentsides
of the basePRvint, the anglewill be 180 degreesandthe dot productnegatie. If
oneor both of the edgeendpointsshouldbe projectedexactly to the baseRoint
thiswill resultin oneor both of thevectorsbeingthe zerovectorand,asaresult,
thedot productwill bezero. In thatcase eitherof the two coveragetexturescan
be used,soit doesnot really mattermuchwhich branchthe pixel shadertakes.
In our implementatiora dot productof zerowould usethe coveragetexture for
pointson differentsidesof the baseRoint.

4.2.3 Optimization summary

In [ADMAMO3] Akenine-Mdller/Assarssorreport that their latest hand-
optimizedversionof the pixel shaderfor sphericalight sourcesequiresb9 arith-
metic pixel shadeiinstructionsand4 samplesnto look-uptextures.

Our versionusesjust 40 arithmetic pixel shaderinstructionsand 3 texture
sampleson graphicscardswithout dynamicbranchingin the pixel shaders.On
cardswith dynamicbranchingthe amountof texture samplesare just 2. With
dynamicbranchingthe pixel shadercansimply samplethe correcttexture, but if
thereis no dynamicbranchingthe pixel shademustsampleboth textures,and
choosehe correctvalueafternards.

As mentionedearlierour pixel shadersareall writtenin CG andwe have not
attemptedo optimize the outputfrom the compiler by hand. Consequentlyit
might be possibleto sare a few instructionsthis way to improve performance
further

In [AAMO3] Akenine-MdllerandAssarssompresents& methodfor parameter
izing the coveragecalculationasa four-dimensionafunctionusingtwo 2d points
asindices,so eachindex is in the form (X1;y1; X2;¥2). As 4d texturesare not
supporteddy ary currentgraphicscard,the functionis encodednto a 2d texture
where(x1;y1) determinesvhichregion, (or subtexture,asthey call it), to sample

51

in, and(Xz; Y,) looksup the actualcoveragevaluefrom thatregion. They report
thata discretizatiorof thelight sourceinto 32 32 regionsprovidesacceptable
precisionin thecoveragefunctionand,asaresult,thesizeof theirlook-uptexture
is1024 1024pixels. Storingeachcoveragevalueasa 16-bit oating-point value,
the amountof texture memoryrequiredfor their look-up textureis thus2MB. In
additionto this 2d coveragetexturethey alsousea cubemapthatimplementshe
functionatan2(x; y). They donotreportthesizeof this cubemapbut whatever it
is it mustbeaddedo thetotal texture memorycost.

Using our new techniquethe coveragefunction is reducedfrom a four-
dimensionainto a three-dimensiondunction and,with a similar discretization
of thelight source our two 3d texturesusegust 65KB each(32*32*32*16bit for
eachtexture). The smallsizemeanghatthetexturescaneasilybe createdat load
time andneednot be precalculateéndstoredin a le.

4.3 Problemswith the soft shadow technique

Severalproblemshave yetto besolvedbeforethistechniqudor creatingsoftshad-
ows canbeappliedto a generalgamescenewith real-timeperformanceSomeof

theseproblemsarerelatedto limitationsin currenthardware,andwill likely dis-

appearwithin the next few generationf graphicscards. Other problemsare
relatedto the techniqueitself andchangedo the algorithmarerequiredto over-

comethem. In this sectionwe discusseachidenti ed problemalongwith the
temporarysolutionor work aroundwe have appliedto implementthe technique
ontoday's hardware.

4.3.1 Accesdo the z-buffer

Oneof the rst stepsin the pixel shadetis to calculatethe view spacepositionof
the scenedragmentbehindthe wedgefragmentthatis currentlybeingrasterized.
The x andy component®f this positionis copiedfrom the view-spaceposition
of thewedgefragmentbeingrasterizedwhile the z components thevaluein the
z-huffer atthe currentpixel location.

Theproblemis thatthe z-buffer valueat the currentpixel locationisn't avail-
ablethroughthe pixel shaderAPI. At the moment,the only feasiblesolutionfor
usingthe z-huffer's datain a pixel shaderis to do an extra passover the entire
scenepsingshaderso outputthe depthof eachfragmentto atexture. Thetexture
canthenbesampledrom thepixel shadethatneedghedepthinformation.Some
GPUscanrenderto multiple rendertargetsat the sametime andin suchcaseghe
‘extra’ z-buffer canbe renderedduring the normalrenderingof the scene thus
avoiding the extra pass. However, a screen-sizedexture is still requiredandit

52

usesa signi cant amountof texture memory In addition,the extra Il-rate used
to Il the depthtexture hasa negative impacton the overall performanceof the
application.

No speci cation exists for how depthinformation must be storedwithin a
z-buffer surfaceand, as a result, the different graphicscard manugcturersuse
all sortsof tricks to compressand pack the z-buffer to achiaze maximumper
formance. This alsomeansthatit is expensve to accesshe z-huffer data,asis
evidentin for exampleDirectX whereit getsincreasinglydif cult to lock andac-
cesghez-huffer with eachnew version.Still aread-onlyaccesso thedepthvalue
of the currentpixel might be availablefrom pixel shadersn a future generation
of graphicscard. When,or if, this happenst canbe usedto optimizethe soft
shadaev algorithmandsave somemuchneededandwidthfor therenderingof the
wedges.

4.3.2 Limited blending

With the latestgenerationof graphicscardsthe conceptof oating point tex-

tureswereintroduced.Theseallowstheapplicationprogrammeto createextures
whereeachchannnekontainsa 32-bit signed oating pointvalue.A texturewith

just a single oat channelwould be perfectfor the LI buffer in the soft shadav

algorithmsincethe light visibility factoris justa single oat valuein therange
Oto 1. To updatethe LI buffer we would needto be ableto addor subtractthe
contributionsfrom the differentwedges.Presentlythe only way to let the output
from a pixel shaderdependon the previousvaluein therendertargetis to usethe
x ed-functionblendingoperation. However the blendingcapabilitiesof current
hardwareis quite limited. It is possibleto both add and subtractvaluesfrom a
rendertarget throughthe blendingoperation,but not without changinga render
statein thedriver. In otherwords, it is not possibleto decidewhetheranaddition
or subtractioris to be performedfor eachseperatgixel. A solutionto this might
be to setup the cardto alwaysdo additionandthen output negative valuesfor

thosepixelswherea subtractions required.Unfortunatelythis is not feasibleas
the outputfrom a pixel shaderis automaticallyclampedto lie within the range
[0::1].

To overcomethis problemonecould usea texture formatwith two channels,
for exampletwo channelsvith unsignedL6-bit oating-point valuesis alsopossi-
ble. All positive visibility contributionscouldthenbe accumulatedysingnormal
additive blending,in the rst channelwhile all negative contritutions could be
addedtogetherin the secondchannel. The nal light visibility factorcouldthen
be calculatedn a pixel shadersthe rst channelminusthe secondchannel.Us-

2Corversatiorwith RichardHuddyfrom ATI, ShaderDay003atDTU

53

ing thisapproactthelight visibility factorwould still have 16 bit precisionwhich
is enoughto avoid 'banding' in the gradient.

Unfortunately on currentgraphicscardsblendingis not supportedat all on
rendertargetswith morethan 8 bits per color channela limitation which effec-
tively meanghatthenew oating-point texturescannotbe usedfor the LIl buffer.

Dueto this we have useda standardour channelARGB texture formatwith
8 bits per channelasthe LI buffer in our currentimplementation. Two of the
channelsare usedto hold the integer contributions from the hard shadaev pass,
muchlik eastencilbuffer would, andwith 8 bits perchannelwe canthushave 256
overlappinghard shadev volumes. As suggestedbove the othertwo channels
areusedto hold the positive andnegative gradientcontributionsfrom the wedge
pass.A certainnumberof thebitsin eachpenumbrahanneimustberesenedfor
overlapsandin ourimplementationye use3 bits for overlapand5 bits for each
coveragecontribution. Usingjust 5 bits for the coveragevaluesmeanghatonly
32 differentshadevs shadesare available, which canleadto visible ‘banding'
effectswhenviewing the penumbraregion of a shadev up close. Still, using5
bits for the gradientoffers a decentimagequality. For complex shadav casters
morethan8 overlappingwedgescanoccurandmorebits will have to beresened
for the carry, leaving evenlessfor the actualgradient.See gure 4.14for aclose
up sectionof the penumbrayradientusing8, 5 and3 bits.

8 bit gradient 5 bit gradient 3 bit gradient

Figure4.14:Bandingartifacts

54

In [ADMAMO3], a methodis brie y mentionedby which the authorssplit
eachcoveragecontribution into multiple channels,obtaininga 12 bit gradient
with 16 possibleoverlapsat the expenseof extra pixel shaderinstructionsand
additionalbandwidthuse. We have chosennot to usethis techniqueaswe will
insteadawait thenext generationsf graphicscardswhichwill hopefullyallow for
blendingto oating point rendertamgets. Even better the frame buffer blending
might becomea truly customizablecomponentik e the vertex and pixel shaders
alreadyhave®. Oncebetterblendingis available,the soft shadev algorithmcan
easilybechangednto usingasinglechanneB2-bit oat texture,asoutlinedin the
beginningof this subsectionallowing for high precisiongradientswith avirtually
unlimitedamountof overlappingedges.

4.3.3 Splitting the wedgesn two halves

As describedbove, theclassi cationof afragmentinto theinneror outerpenum-
braregiondecidesvhetheright shouldbeaddedor subtractedrom theLl buffer.
For every pixel this classi cationmustmatchthe hardshadev classi cationper
formedin the hardshadev pass.If for example,a pixel is classi ed asbeingin
the outerpenumbran thewedgepixel shaderbut the samepixel hashadits light
visibility setto zeroduring the hardshadav pass,thenlight will be subtracted
from a pixel whoseLl valueis alreadyzero. Similarly, it could happerthatlight
is addedo apixel thehardshadev passhasnot markedasbeingin shadav. Such
errorsresultin very visible artifactswherepixels appearoverly bright or overly
darkwithin the penumbraegion.

It oughtto beimpossiblefor suchanerrorto occurif theclassi cationof each
fragmentwasmadein the sameway during boththe hardshadev andthe wedge
passbutin reality it doesoccurfor pixelsator very nearthe hardshadaev plane.
Thereasonis thatthe hardshadev passis madeby renderinga normalshadav
volumeinto the LI buffer. Eachtrianglein the hardshadaev hull is sentto the
rasterizerwhich discretizegheotherwisemathematicallycontinuoussurfaceinto
a nite numberof fragmentsgachwith integer coordinates.This meanghatthe
hardshadev edge,asrenderednto the LI buffer, is notthe mathematicatorrect
intersectiorbetweertheshadaev volumeandtheunderlyinggeometry As aresult,
it is impossibleto mathematicallyclassify a certainfragmentasbeinginside or
outsidethe hardshadaev from the pixel shader

A solutionis presentedor this problemin [ADMAMO03] whereeachwedge
is split into two halves,onefor eachof theinnerandouterpenumbraegions. By
‘embedding'the hardshadaev hull in the planesthat split the wedgesit is now

3Accordingto RichardHuddy from ATl a mechanisnfor implementingcustomframe buffer
blendingoperationswill appeain future generation®f graphicscards.

55

possibleto ensurethat,whenrenderingfor exampletheinnerhalf of eachwedge,
the pixel shademill not be run for pixels nearthe hardshadev edgein the LI
buffer thathasnt beensetto zero. Similarly, whenrenderinghe outerwedgeghe
pixel shademwill only subtractlight from pixelsthatareleft fully lit by the hard
shadav pass.

Theintersectiorbetweereachwedgehalf andthe scenegeometrycanbe sten-
ciled outto cull away unnecessarpixelsexactly asdescribedarlier andtheclas-
si cation stepis now no longernecessaryinsteada constantanbeuploadedo
the pixel shaderthat determinesvhetherto addor subtractlight for all the ren-
deredfragments.

4.3.4 Renderingonewedgeat a time

Perhapghe mostsevereproblemwith thealgorithmin its currentform is thatthe
wedgesmustbe processe@ndrenderedneat atime. This is a consequencef
the problemdescribedabore whereeachwedgeis split into two halvesto avoid
renderingartifactsnearthe hardshadev edge.This solutionremovedtheclassi -
cationstep,andthe algorithmnow reliessolely on the stencilanddepthbuffer to
determinewhich pixelsthe shadershouldaddlight or subtractight from. How-
ever, asseenn gure 4.15,this canleadto problemsvhenwedgesoverlap.

Figure4.15: Problemwith overlappingwedges.

Figure4.15shaws theintersectiorbetweerntwo wholewedgesA andB, and

56

the scenegeometry If bothinnerwedgehalveswereto be renderedat the same
time, the rst stepwould beto stencilout the intersectiorbetweerthemandthe

scene,this areais marked out in gray on the gure. Now, whenrenderingthe

inner wedgehalf of wedgeA, the pixel shadermwill alsobe executedfor pixels

in A's outer penumbraegion thatintersectswith B's inner wedgehalf, (marked

astheleft problemareain the gure). Sincethesepixelsareactuallywithin the

penumbraegionfor wedgeA, the pixel shadewill calculateanon-zerocoverage
valuefor them.Moreover, sincewe arecurrentlyrenderingnnerwedgehalves,a

constantvill have beenuploadedo ensurdhatthis coveragevalueis addedto the

LI buffer. As aresult,light is addedwherein factit shouldhave beensubtracted.
For otherwedgecon gurationsthantheoneshavnin the gure asimilarproblem
canbeidenti ed whenrenderingmultiple outerwedgehalvesat the sametime.

Thereforethe wedgesnustberendereneat atime. In fact,therearemul-
tiple renderingstepsinvolvedin renderingust a singlewedge.To stenciloutthe
intersectioneachwedgehalf is rst renderedo the stencilbuffer only andthen
renderecbncemorewith the pixel shaderenabled.Soatotal of four rendercalls
aremadefor eachwedge.

This is a very seriousproblembecauseas describedn [WI003], thereis a
smallbut still signi cant CPU costto eachdraw call madeto the graphicsdriver.
It is reportedthata 1GHz CPU canissuejust around25000 draw calls at 100%
CPU usage.With four draw calls per wedgeanda desiredreal-timeframerate
of 30FPSthat givesus about200 wedges,(or silhouetteedges),per frame per
gigahertzof the CPU.In generalgamescenegeneratanary timesthis number
of silhouetteedges, evenwith justa few light sourcesrisible, andthe CPUthus
becomeshe majorbottleneckin thealgorithm.

Thisis unsatisctoryfor severalreasonsFirst, the speedf currentCPUsare
magnitudesoo slow andit is thereforeunlikely thatincreasesn CPUspeedswill
overcomethe problemarytime soon. Moreover, asGPUscurrentlyevolve faster
thanCPUs thegraphicgetail,andthusthenumberof silhouetteedgeswill likely
increasdasterthanthe CPU speedherebymakingthe problemworseovertime.
Secondlyevenif the CPU power wasavailableit is unfortunateto spenda large
amountof CPUpoweronjustissuingdraw calls. In agamethe CPUis neededor
mary otherthingssuchasvisibility determinationAl, sound,collision detection
andgamescripts.

Fromthediscussiorabove we concludethatif the soft shadev techniquds to
beusedn arealgameanalgorithmicchangehatallowsalargenumberof wedges
to berenderedatthe sametime, with a singledraw call is necessaryWe have be-
gunwork in this eld andhave comeup with atechniquehatreducegshenumber

4The exactnumbermightvary slightly for differentgraphicscardsanddrivers.
SWe easilyreach5000silhouetteedgesor morefor simplescenesn our gameengine.

57

of draw callsfrom oneperwedgeto one per silhouetteloop. Unfortunately our

currentimplementatiorof this new techniqueworks only for a limited group of

objects,namelythosewith corvex silhouetteloops. We describethis technique
in moredetailin sectiond.4 andpresenbenchmarkesultsin section4.5to back
theseclaims.

4.3.5 Fill-rate problems

For simple sceneswherethe numberof drav calls is low, we have identi ed
anotherbottleneckthis time on the GPU. Our obsenationis that performancas
guitedependenbn screerresolution.Fromthis we concludethatthe algorithmis
eitherlimited by theamountf pixel shadeinstructionsexecutedr ontheamount
of ll-rate used.Wehavealreadyputforth asolutionto reducehenumberof pixel
shadeinstructions(seesectiord.2),sothereis notmuchwe candoregardingthe
pixel shaderexceptawait nenv generation®f graphicscardswith fasterandbetter
pixel shadelcomponents.

Regardingthe ll-rate we have identi ed a problemcauseddy hardwarelim-
itations, which our currentimplementatiorsuffers from. As describedabove we
usea32-bitfour-channelARGB textureasour LI bufferin ourcurrentimplemen-
tation. Two of the channelsaareusedduringthe hardshadev passwhile the other
two areusedin the wedgepass. None of the passeseadsor writesto channels
usedby the otherpass.The nal light visibility factoris calculatedrom all four
channeldut the calculationis performedn yet anothempixel shaderwhich only
readsfrom the Ll buffer.

This meangthatwe could split the LI buffer up into two 16-bit textureswith
two channelseach,onetexture for eachof the two passes.f this waspossible,
we couldreducethe Il-rate from 32 bitsto 16 bits for eachrenderedragmentin
both the hardshadev andwedgepass,in effect cutting the total Il-rate in half.
The pricefor this optimizationwould be thatthe shadercalculatingthe nal light
visibility factorwould have to sampletwo LI buffer texturesinsteadof one, but
the sumof the sampleddatawould still be 32 bits perfragment.

In fact, a suitabletexture format exists on currentgraphicshardware but un-
fortunatelyit cannotbe usedasrendertargetwith supportfor blending,whichis a
requiremento implementour LI buffer. Again,in future generation®f graphics
cardswe expectto be ableto customizethe blendingstepfrom within the pixel
shaderallowing usto implementthe LI buffer asa single-channeloating point
surfacewith either16 or 32 bits precisionthusreducingtherequired ll-rate.

58

4.4 The per-loop algorithm

In this sectionwe outline our new techniquevhich allows usto batchtogetheithe
renderingof multiple wedgesnto a singledraw call, thusovercomingthe major
CPU bottleneckwe identi ed in section4.3.4. The new techniquealsoallows us
to usetheoriginal non-splitwedgesdescribedn sectiord.1.2,withoutsacri cing
apixel-preciseclassi cationof whetherafragments locatedin theinneror outer
penumbraegion. Thisreducesll-rate, vertex transformationsandthesizeof the
datatransferredver the AGP buseachframe,(in the caseof animatedgeometry
or lights). Unfortunatelythe methoddoesnot work for generakhadav casters.

Theoriginal versionof the soft shadev algorithmperformstwo differentclas-
si cationsregardingeachfragment:whetherit is in hardshadaev or not, thisis de-
terminedin thehardshadev passandwhetherit is in theinneror outerpenumbra
region,whichis decidedn the pixel shadeusedfor thewedgepass.As explained
in section4.3.3,thesetwo classi cationsmustmatchexactly or visible artifacts
will occur Splitting the wedgesin halvessolvesthe problem,but consequently
eachwedgemustberenderedseparately

Anothersolutionto the problemis to performboth classi cationstepsin the
sameplace,namelyin the wedgepixel shaderusingthe samedatato make the
classi cations.Thatway we canmalke surethetwo classi cationswill match.

Figure4.16: Silhouettewith threeedgerojectedontothelight plane.

In gure 4.16we seethreeconnectedilhouetteedgesprojectedontothelight
planeasdescribedn sectiord.2.2. Thedeterminatiorof whetherafragmentis in
the inner or outerpenumbraregion, with respecto a singleedge,is determined
by the centerof the spherebeingin front of the single projectededgeor not,
asexplainedaborve. The determinatiorof whethera fragmentis inside the hard
shadowareaor not is determinedoy whetherthe centerof the spheres covered
by the projectionof all the connectedilhouetteedgesontothelight. Figure4.16
thereforeshows the projectionfor afragmentoutsidehardshadaev.

We seethatwhile the classi cation of a fragmentbeingin the inner or outer
penumbraregion is an 'edge local' property the classi cation of beinginside

59

or outsidehard shadav is not. However hard shadaev is not a global property
either For a particularlight sourcea fragmentcanbe coveredby shadavs from

mary differentobjects.Beinginsidethe hardshadev region from oneshadaev is

independentf othershadavs. Thesilhouetteedgedrom a shadav-castingobject
formloops,(segAss03 pp. 133—-135)andeachioop canbethoughtof asasingle
shadaev, eachwith a hardshadav region. Hard shadav is thereforea 'silhouette
loop local' property

If we assumethat the silhouetteloops form corvex shapeswhen projected
ontothelight plane,thenafragmentis in hardshadav if, andonly if, it is in the
innerpenumbraegionfor all theedgeof theloop. We cantherefordetthewedge
pixel shadeuseachannelin therendertargetfor 'hard shadev data'. Concretely
we canlettheshademadd1 to this channelf thefragments in theouterpenumbra
region for a wedge,thus agging that the fragmentcannotpossiblybe in hard
shadav. After renderingall the wedgesof the silhouetteloop, a subsequenpass
canthendeterminewhethera fragmentis in hardshadaev simply by checkingif
the'hard shadev data' channeis still zero,thevalueit is clearedto. Besideghis
hard shadev datavalue, the wedgepixel shaderalso outputsa coveragevalue,
calculatedasin the original algorithm,thatit eitheraddsor subtractdrom theLl
buffer, basedon its classi cation. Using this approachthe wedgepixel shader
effectively performsboth classi cation stepsand no renderingartifacts appear
nearthehardshadev edge.

The considerationsbove form the basisof our new algorithm,in which we
reducethenumberof rendercallsmadeto thegraphicsdriverby batchingtogether
all wedgedor eachsilhouettdoop. Sincethenumberof edgesn asilhouettdoop
is at least3, (and often muchhigher), this addressethe CPU bottleneckof the
original algorithm,asidenti ed in section4.3.4.

We now describesomeof the detailsthat are necessaryor an actualimple-
mentationof our idea. First of all, the calculationof the nal LI valueusedto
modulatethe light is a bit more complec thanin the original algorithm. The
subsequenpassmentionedabore thatchecksfor the hardshadev propertymust
be implementedn a pixel shademvhich we will call the coverageTransferpixel
shaderThis pixel shadercalculategheloop local LI valuefrom the outputof the
wedgepixel shaderandtransfesit to the nal LI-buffer. In ourimplementation,
thelooplocal LI valuesaresimply addedtogetherto form the nal LI valué.

ThecoverageTansfemixel shadehastwo maincaseseitherafragmentis in
thepenumbraegionor it is not. This canbe determinedy checkingif thecover
agevalue thedifferencebetweerthepositive andnegative coveragecontributions
from the wedgepixel shaderis non-zero.If it is non-zerothe fragmentmustbe

6As describedn [ADMAMO3] section5.1, thisis notentirely correctandit would be possible
to usethe suggestedveragevalueinstead.

60

within the penumbraregion sincethe wedgepixel shaderasonly beenrun on
fragmentsnsidethis region. Now we checkwhetherthe fragmentis in the hard
shadaev region, which canbe doneby determiningwhetherthe hardshadev data
valueis still zero,asexplainedabove. If the fragmentis in hardshadev then1
mustbe addedto the coveragevalue,(in the original algorithmthis is performed
in the hardshade pass).If we areoutsidethe penumbraregion thenthe cover-
agevalueis calculatedpurely basedon the hard shadev pass,which must still
be performedn our new algorithmto shadev the fragmentsn the umbraregion.
Section6.4 shavs the CG codefor the coverageTansferpixel shader

From the accountabove we seethat the wedgepixel shadercan no longer
renderdirectly into the nal Ll-buffer. Insteadwe usea buffer calledthe Loop-
Buffer to hold the loop local LI values. As with the LI buffer, it mustcurrently
be implementedvith a 4-channeB2-bit ARGB surfacesincewe needto be able
to blend(add)valuesto it. The rst channelis usedfor the hardshadav passto
ag thosefragmentghatarein the umbraregion, exactly asin the stencilbuffer
algorithm. The secondchanneis usedfor the hardshadaev data ag andthe last
two channelsare usedfor the positive and negative coveragecontritutionsfrom
thewedges.The LoopBufer is setasrendertargetwhenrenderingboththe hard
shadav passandthewedgesandis usedasatexturewhenrunningthe coverage-
Transferpixel shader

To summarizehe above, a step-by-steescriptionof the perloop algorithm
is givenhere:

1. Clear nal LI-buffer.
2. For eachsilhouetteloop L :

(a) CleartheLoopBuffer andsetit asrendertarget.

(b) Rendetthehardshadav for L.

(c) Rendetthewedgesn L.

(d) Setthe nal LI-buffer asrendertargetandthe LoopBuffer astexture.
(e) Rendera screen-sizeduadwith the coverageTansferpixel shader

3. UselLl-buffer to modulateighting asusual.

Unfortunatelythereareseveralproblemswith this algorithm.Firstly, we have
assumedhatthe projectionof silhouettdoopsis corvex, andthisis generallynot
the case. Non-corvex loops make the determinationof beinginside or outside
thehardshadev muchharderandcurrentlywe have no solutionfor this problem.
Secondlythe renderingof a silhouetteloop is followed by the coverageTansfer
pass,which is expensve sinceit executesa pixel shaderfor every pixel on the

61

screenln addition,the LoopBuffer, ascreen-sizedendertarget, hasto becleared
for eachsilhouetteloop. Finally, the numberof rendercalls canstill be high, as
comple« modelscanhave mary silhouettdoops.

Themary extrapixel shadeexecutionsaandtheclearoperatiorfor eachsilhou-
etteloop becomehe performancéottleneckof the new algorithm,and,because
of this, the perloop algorithmis quite slow, generallyslower thanthe original
algorithm.Howeverthe perloop algorithmhasaninterestingproperty:it is GPU
limited, whereaghe original algorithmis CPU limited becausef thelarge num-
berof rendercalls. As describedabove, sincethegraphicscardscurrentlyevolves
muchfasterthanCPUs,this might be a goodtradeof.

Note alsothat someoptimizationscould be implementedo improve the per
formanceof the perloop algorithm.An exampleof thisis that,it is notnecessary
to executethe coverageTansferpixel shadeifor every pixel on the screenponly
for thoseaffectedby the renderingof the silhouetteloop, which might only be a
smallfractionof the pixelsonthescreen.

4.5 Performanceanalysis

We have implementedoth the original andour new perloop versionof the soft
shadav algorithm, using our optimizedcoveragecalculationtechniquefor both
versions.In this section,we presentsomeperformanceneasurementhat shov
how the bottleneckis indeedfound in different placesfor the two techniques.
Fourtestscenesasshaovnin gure B.6, arerenderedn two differentscreerres-
olutions,(640x480and1024x768) andon two differentCPUs,(anAMD Athlon
900MHz andan Intel Pentium43GHz). An ATl Radeor9700Prographicscard
was usedfor all tests. The testhave beenconstructedo graduallyincreasethe
numberof lights and objects,and consequentlhfthe numberof wedges. Below,
two tablessummarizéhe measuregherformancen FPS.

1024x768 900MHz 3GHz

Scene #wedges| Orig. | Perloop | Orig. | Perloop
1 4| 71.0 68.0| 78.0 73.0
2 64| 55.0 42.0| 59.5 44.0
3 538 | 13.0 9.0| 19.0 8.5
4 756| 8.5 6.5| 15.0 6.5

62

640x480 900MHz 3GHz

Scene | #wedges Orig. | Perloop | Orig. | Perloop
1 41 175.0 168.0| 190.0 179.0
2 64| 82.0 103.5| 136.5 108.0
3 538 | 13.0 21.5| 35.0 22.0
4 756 8.5 16.0] 22.5 16.5

As canbeseerfrom thetablestheoriginal algorithmquickly becomegotally
CPUboundonthe 900MHz CPU,anda changean resolutionhasno effectonthe
performanceThisis the casefor testscenes and4.

With enoughCPU power available, the original algorithm is insteadGPU
bound, which is why a similar patterncannotbe found on the 3GHz CPU or
in thetwo simplestscene®n the 900MHz machine.Still, in the lower resolution
wherethetechniquas lesslik ely to be GPUbound performances predictabldor
the original algorithm. The drawing of a singlewedgerequiresfour passestwo
for eachwedgehalf. Therefore,in testscened, thereare 3024 rendercalls just
for thewedgesandtherenderingof the hardshadav andthe objectsthemseles
mustbe addedto this number As explainedin sectior4.3.4,it is possibleto per
form somevherearound25000rendercalls per 1GHz CPU, if the CPUis used
for nothingelse. Assumingthis is the case,androundingthe 900MHz machine
to 1GHz, we canexpectmaximumpossibleframe-rateof 1GHz*25000/3024=
8.2FPSand 3GHz*25000/3024= 24.8FPSor the two CPUsrespectiely, num-
bersremarkablycloseto thosemeasuredor the original algorithm.

Theperloop algorithm,on the otherhand,appeargo betotally GPUlimited.
For all thetestscenesadecreasé resolutionresultsin alargeperformanceain.
In addition,performances comparabldor thetwo CPUsin bothresolutions.

63

Chapter 5

Shadov management

Renderinga shadav volumeis relatively expensve andin an ervironmentwith
mary light sourcesand whereall objectscastshadavs, the amountof shadav
volumesin the scenequickly grows to very large numbers. Consequentlyt is
very importantto be ableto cull away the shadev volumesthat are outsidethe
viewing frustum,andthusdo not affectthe nal image,before they areprocessed
by thegraphicscard.

In this chapterwe rst describea culling techniquecalled 'frustum culling’,
which rejectsobjectsoutsidethe viewing frustum basedon their boundingvol-
umes. We then presenta methodfor calculatinga boundingvolume for VS
shadev volumes. Next, a datastructurecalleda'scenetree’ is presented.The
scenetreeis basedupona quad-treebut hasbeenmodi ed sothatit is ableto
handledynamicscenesvith moving objectsin anef cient way. We describehow
to usethe scenetreeto acceleraténtersectiomjueriesbetweerthe objectsin the
scenaandvariousvolumessuchasa frustum,sphereor box. Finally, we conclude
the chapterby presentingan optimizedversionof the multi-passstencilshadev,
usingthe culling techniquego speedup the overallrenderingof the scene.

5.1 Frustum culling

Along with the nearandfar clipping plane,the camerade nes a frustumshaped
volumethatenclosesll visible geometryfor a particularframe. Only thosetri-
angleghatarefully containedn or intersecthis volumearevisible onthescreen
andmustbe renderedoy the graphicscard,therestcanbe culled away andtheir
processingkipped.

As turnsout, it is too expensve to performthis culling checkfor eachindi-
vidual trianglebecausén thetime the CPU spendsn culling away a trianglethe
GPUcaneasilymanagdo renderit. Instead aboundingvolumeis calculatedor

64

Far plane

Near plane

Camera
B <

D

Figure5.1: Theviewing frustum

a groupof trianglesthatis likely to berelatively closeto eachother In [Wlo03],
Wlokareportsthatanno2003the maximumtrianglethroughputfor nVidia graph-
ics cardsis achiezed by renderingtrianglesin batchesof 500 or moretrianglesat
atime, sothisis alsoa goodsizefor thetrianglegroupsusedfor frustumculling.

Theideais thatif the boundingvolumefor sucha groupis fully outsidethe
viewing frustumthensoareall thetrianglesit contains.If, onthe otherhand,the
boundingvolumeis fully containedn or intersectghe frustumthenall triangles
insideit arerenderedevenif afew (or evenmost)of themareactuallyoutsidethe
frustum. In large andcomplex scenesthe frustumculling techniquecanquickly
cull avay alarge percentagef the trianglesthatareoutsidethe viewing frustum
andthusit canaccelerateherenderingof the sceneconsiderably

Two typesof boundingvolumesthatareoftenusedfor frustumculling arethe
boundingsphereandthe axis-alignedooundingbox’.

The intersectiontest betweena sphereand a frustum is simpler and thus
quicker than the test betweenan AABB and a frustum so it would seemrea-
sonableto usea sphereasthe boundingvolume. And it is the bestchoiceindeed
for thosemeshegshatareproperlyapproximatedy a sphereput oftenan AABB

1Oftenreferredto asanAABB, it is aboxwith sidesthatareparallelto the X,Y or Z plane.As
its orientationis x ed,it canbedescribedy justtwo points- aminimumandmaximumpoint.

65

givesamuchtighter t aroundameshmakingit amoresuitableboundingvolume
asillustratedin gure 5.2. Themore'air' thereis insidea boundingvolume,the
greateris the chancehatthe boundingvolumewill intersecthe frustumwithout
any of its containedrianglesdoing so, which is the worst-casescenarian frus-
tum culling. Whenthis is combinedwith thefactthatwhile it is easyto calculate
a boundingspherefor a meshit is nottrivial to calculatethe minimumbounding
spherejt becomeglearwhy the AABB is themostcommonchoicefor bounding
volumes.

N

a) Bounding box b) Bounding sphere

Figure5.2: Boundingvolumes

To performintersectiortestsbetweertheview frustumandboundingvolumes
the frustumis representeds six planes,all with normalspointing towardsthe
insideof the frustum. In orderto checkif a singlepointis within thefrustumwe
just have to determinewhetherthe pointis in front of all six planes.If thisis the
case,thenthe point mustbe within the volume. Checkinga sphereagainstthe
frustumisn't muchharderwe just have to checkthatthe spherasn't fully behind
ary of theplanes.n otherwords,we mustcheckthatthesigneddistancdrom the
spherecenterto eachplaneis greateithanthenegative sphergadius.Determining
whetheranAABB andafrustumintersectss abit morecomplicatecasthe AABB
consistf two pointsthatcanappeain mary differentcon gurationsrelative to
the view frustumplanes.But the mainideais still to checkthe spatialrelations
betweerthe two pointsandthe six frustumplanes.

5.2 Bounding a vertex shadershadaowv volume

For ary rigid objectwith a constantsize and positionin world-spaceit is easy
to calculatea boundingvolume, andusethis for culling. However,asdescribed
above in section3.3.3,a VS shadav volumeis extrudedby the vertex shadelin a

66

directionthatdepend®nthepositionof thelight. Thismakesit harderto calculate
aboundingvolumethatencloseshe shadev volumebecausave do not have the
extrudedversionin systemmemory Thereforwe cannotsimply loop throughthe
verticesto measureheir extent.

Whatwe cando is calculatethe AABB for the collapsedshadev volumein
object-space By simulatingthe vertex shaderwhich performsthe extrusion of
theshadaev volumeonthis boundingbox, we getanextrudedbox,andthe AABB
of thisboxis guaranteetb encloseheextrudedshadaev volumealso,thusmaking

it avalid boundingvolume;see gure 5.3.

| Shadow volume

[— Extruded bounding box

Shadow volume bounding box

Figure5.3: Boundinga vertex shadershadev volume

Actually, sincewe donotneedaclosedshadaev hull for theextrudedbounding
box, (wewill notrenderit, we justneedts pointssowe canmeasurés extent),we
do notneedto createa specialversionof it with degeneraterianglesateachedge
aswasthe casewith the normalgeometry Nor do we needto determinewhich
edgesareonthesilhouettein orderto extrudeit. Insteadwe just extrudeall eight
pointsandcalculateour nal boundingboxby takingtheminimumandmaximum
points of the eight original points and the eight extruded ones. The resulting
boundingbox may be slightly larger thanwhat we would have gottenfrom the
trueextrudedbox, but it will neverbesmaller soit is avalid boundingboxfor the
shadev volume. Thereducedcompleity of extrudingthe box outweighsthe fact
thatour boundingvolumeis notastighta t asit couldbe.

67

5.3 Scendree

A scendreeis adatastructuranto whichonecaninserttheobjectsn asceneThe
scenetreesupportsef cient queriesto obtainthe objectsthatintersectdifferent
volumessuchasa frustum, sphereor box. Often a sceneis dynamic,with one
or more animatedand moving objects. This implies that our scenetree should
provide fastremove andinsertoperationsso thatwe canef ciently re-insertan
objectwhenit hasmoved.

The scenetree we presenthereis basedon a quad-treé but hasseveral key
differencesvhichwe will describdater A quad-treas arootedtreewhereeach
nodehasfour children,hencethe name. Eachnodecorrespondso a 2d square
andthefour childrenof anodecorrespondo thefour quadrant®f thissquare As
in ary treestructure the nodesthatdo not have childrenarecalledleavesandis
usuallywherethe datais stored.Oneapplicationof a quad-trees to storea setof
pointsin theplane.In thatcasethe squareof therootnodeis equalto a bounding
squareto all the points, andthe treeis then subdvided until no morethanone
pointresidesn eachleaf; see gure 5.4.

I NE NW sw [JSE

’
& & '

Figure5.4: Storingpointsin aquad-tree

Eventhougha quad-treds a 2d structurewe caneasily extendit to storing
pointsin 3d. We simply assigna x edtop andbottomy valueto eachnode,f.ex.
takenfrom the 3d boundingbox of all the points,makingeachnoderepresena
3d box insteadof a 2d square.Thetreeis still only subdvided alongtwo axes,
namelythe X andZ-axis,soeachnodestill hasexactly four childrer?.

In its basicform, a quad-treehasseveral propertiesthat make it unsuitable
for useasa scenetreethough. For exampleit is not balancedandthe depthof
a particularbranchdependon the densityof the storeditemsin the region the

2Many sourceslescribethe quad-tred.ex. [dBvKOO0Q
3A variantof the quad-treesxists which alsosubdiidesalongthe Y-axis. As this resultsin
eachnodehaving eightchildreninsteadof four, this variantis appropriatelycalledanoctree.

68

branchcovers. This meanghatwhenanitem is movedandre-insertedn a nev
region of the tree new subdvisions may occurwhich involve allocationof nev
leaves,splitting itemsinto thesenew leaves,deletionof theold leafetc.

However, we wantto be ableto setup the scenetreeonceandfor all atload
time andthenbe ableto move itemsaroundwithout makingary changeso the
overall structureof the tree. We alsowantto usethe scenetreeto storeobjects,
insteadof just points. Thismeanghatit is notalwayspossibleo subdvideanode
sincethe objectsinsideit may overlapeachotheror the boundariedbetweenwo
children.An objectcanalsobefully containedn anodebut beunableto t inside
ary of thechildren.In gure 5.50bjectsA andB spansnultiple child nodesand
cannotbe putinto eitherof themwhile objectC is smallenoughto beputinto the
lower left subdvision.

<A
D 4 |4 A

Figure5.5: Splitting objects

To overcometheallocationproblemswe setup our scendreeasafull hierar
chy of preallocatedandinitially emptynodesandleaves. As with the quad-tree,
we startwith aboundingbox for all the objectswe wantthe scendreeto contain.
However, ratherthansubdviding the treeuntil theamountof objectsin eachleaf
is smallenoughwe subdvide thetreeuntil the sizeof eachleafis smallenough.
What this sizeis exactly dependson the objectsbeing storedin the tree, but it
shouldbe at leastaslarge asthe smallestobjectin the scene,(ary leaf smaller
thanthis will not be ableto containarny objectsanyway). As thetreeis intended
to accelerateulling queriesijt is actuallynot desirableo subdvide it all theway
down to the individual objects,soin practicethe leavescanbe large. In ourim-
plementatioreachleaf hasa sidelengthof 5 metersin our virtual world.

To overcomethe splitting problem,we extend our scenetree soit canstore
objectsin the nodesaswell asin the leaves. To insertan objectinto the treewe
'‘push’ it asfar down the treeaspossible puttingit in the tightest tting nodeor
leaf. As theroot nodein the scenetreehasa box the samesizeasthe bounding
box of thescenat cancontainary objectin thesceneand,asaresult,aninsertion

69

into the scendreecanneverfail.

As the removal of an objectdoesnot affect the overall structureof the scene
treeit canbe performedby simply removing the objectfrom the containingnode
or leaf. If objectsareassigned handleto their scenereenodeat insertiontime,
removal canbe donein time O(1). Insertionof an objectdoesnot changethe
overall structureeither andcanbe donein time linear in the depthof the tree.
Thisis O(log(m)), wherem is the maximumof the X andZ sidelengthsof the
sceneboundingbox.

Usingtheimplementatiordescribedbove, it is possibleto handlescenesvith
dynamicobjectsef ciently andin typicalgamesceneswheretheamountof mov-
ing objectsis relatively small, thereis no signi cant performancehit involvedin
re-insertinghe movedobjects.As afurtheroptimizationit is worth noticingthat,
over asingleframe,a moving objectwill oftenonly have movedwithin the node
or leaf thatit alreadyresidesn, makinga re-insertionunnecessaryA checkfor
this casecanperformedn constantime usingthe objectshandleto its scenetree
node. Also insteadof removing an objectandre-insertingit from theroot, it is
possibleto pushthe objectupwardsin thetreeuntil it is fully containedn anode,
andthenpushit downwardsasfar aspossible.In somecaseghis methodfaster
thandoingafull re-insertionput in theworst-casescenaridhe costis doubled.

The scenetreecanbe usedto acceleratentersectiongueriesbetweerthe ob-
jectsin the sceneandvolumessuchasa frustum, a sphereor a box. The main
ideais thatif a nodes box s fully outsidethe volumethenall its childrenmust
be outsideaswell andwe cantotally skip the sub-tree.If a nodes box is fully
containedn the volumethenso areall the objectsthatthe nodeandits children
contain. Thus,we canincludeall objectsin this nodes sub-treewithout any fur-
therintersectiorchecks.In the nal casewherethevolumeintersectdhe nodes
box, eachobjectin thenodeis checledfor intersectiorandthe algorithmis called
recursvely on eachof thefour children.

Assumingaroughlyequaldistribution of objectshroughouthescendreethis
meanghatwith a singleintersectionchecklarge partsof the scenecanbe culled
away. In gure 5.6,justthreechecksbetweerthe sphereandthe nodeboxesata
certainlevel in the scendreeculls avay % of all objectsin thesub-tree.

5.4 Efcient shadow rendering

In the following we will assumehatall lights are omni-directionalpoint lights
with a nite range. This meansthat eachlight sourcehasa sphee of in uence
with its centeratthepositionof thelight andaradiusequalto thelight range.The
light cannotaffect objectsoutsideits sphereof in uence.
Themulti-passstencilshadav volumeis describedn section3.2.2.Oneof the

70

Sphere query

’ \

[v
: [

'

' '

' '

Figure5.6: Culling grey areaswith threeintersectiorchecks

sub-routinesn the algorithmis to renderthe scenefor every light-sourcewhile
using the stencil-tuffer to allow drawing solely in areasthat areilluminated by
thelight. If wefollow this procedureblindly, we couldendup doingalot of work
thatwould have noeffectonthe nal image.Thesearethethreemaincasesvhere
super uouswork oftenoccur:

1. A light-sourcedoesnot affect anything in the view frustum. In this case,
boththe renderingof shadev volumesfor the light andthe extra passover
the geometryis redundant.

2. An objectis sofar away from avisible light-sourcethatthe objectreceves
no light from it. In this case,the renderingof the objectandits shadav
volumeis redundant.

3. An obijectis affectedby alight sourceput theshadev volumeis outsidethe
view frustum.In this casetherenderingof theshadaev volumeis redundant.

As describedin section5.1, thereis an efcient algorithm for checkinga
sphereagainsta frustumso to avoid casenumberl in the list above we simply
have to checkthe light sources sphereof in uence againstthe view frustum. If
the sphereis fully outsidethe view frustumthenneitherthe light sourcenor its
shadev volumescanaffectthe nal imageandwe canskip ary furtherprocessing
of thelight. Thecostof nding thelights thataffectthe view frustumin this way
is linear in the total numberof lights in the scene andwhetheror not to accel-
eratethe procesghroughatreestructuredependsn the application.In practice,
however, mostsceneswill probablyhave relatively few light source$ andit is
unlikely thatsimply checkingall light sourcedinearly will resultin a signi cant
performancalropasthe'spherevs. frustum' checkis fairly cheap.

4Usuallylessthan100.

71

If alight affectsthe nal image,we mustrenderall theshadev volumesit has
causedNaturally, only thoseobjectsin the scenehatlie within thelights sphere
of in uence cancastashadev fromit. We canthereforend thesetof objectsthat
intersectghe lights sphereof in uence andrenderonly the shadev volumesfor
those.In doingso,we have avoidedcasenumber2 in thelist above. Again, there
is anef cient intersectioralgorithmfor AABB vs. spherechecksthatwe canuse
to checkthe object's boundingbox againstthe sphereof in uence. However, a
sceneoftencontainsmary objects,andalinearalgorithmthatcheckseachobject
againstthe sphereof in uence will betoo slow. Insteadwe setup a scenetree,
asdescribedn section5.3,anduseit to quickly nd all objectsthatintersecthe
light's sphereof in uence.

Oncewe have the setof objectsthatintersectdhelight's sphereof in uence,
andthusthe setof potentiallyvisible shadav volumes,we notethatit is possible
for avisible light to causea shadav volumethatis fully outsidetheview frustum.
To avoid renderingthesewe simply checkeachshadav volume's boundingbox
againstthe view frustum. For shadev volumescalculatedon the CPUiit is easy
to maintaina boundingbox, andfor shadev volumesextrudedin a vertex shader
we calculatea boundingbox asdescribedn section5.2. Throughthis lastculling
mechanisnmwe have avoided casenumber3 in the list and shouldbe rendering
only thoseshadav volumesthatactuallyaffectthe nal image.

We have usedthe ideasdescribedabore to modify the multi-passstencil
shadaev algorithmandmale it capableof renderingarge scene®f ciently:

1. Clearcolor-buffer andz-hbuffer.
2. Rendetthe scenewith only ambientandemissve lighting.

3. Forall lightsl:

(a) Checkl's sphereof in uence againstthe viewing frustum. If | does
notintersecthe frustumwe skip it.

(b) Querythescendreefor thesetof objectso thatintersects's sphereof
in uence. For every objectin o, checkthe AABB of thel-generated
shadev volumeagainstheview frustum.

(c) Clearstencil-tuffer, disablewriting to color-buffer and z-buffer, set
z-huffer testto less-than.

(d) Forall visible shadav volumesv:

I. Rendenall frontfacingtrianglesof v generatedby |, incrementing
the stencilvaluewhenpassinghe z-test.

ii. Rendemall badk facingtrianglesin v generatedby |, decementing
the stencilvaluewhenpassinghe z-test.

72

(e) Re-enablenriting to color-buffer, setz-buffer testto equal,setstencil
testto passwhenvalueis 0, andsetadditive blending.

() Renderll objectsin o with only diffuseandspeculatighting from .

The modi cation doesnot affect optimizationsof the innermostoop suchas
thetwo-sidedstenciltechniqgueandCarmackseverse describedn section3.3.

Usingthe above culling proceduresloesnot guaranteg¢hat a scenedoesnot
generategoo mary visible shadev volumesfor the graphicscardto handleat an
acceptabldramerate. In that case,we can start culling away visible shadav
volumes. As thiswill resultin visualerrors,it is important rst to cull away the
shadev volumesthat contritute leastto the nal image. We suggestalculating
an'importancevalue' for eachvisible shadev volume,basedon someheuristic,
andthensortingthe shadav volumesandrenderinghe mostimportantones rst.
It is thenpossibleto allot a certainamountof time or trianglesto eachlight andto
stoprenderingshadev volumesoncethatamounthasbeenexceeded.

Two factorscanbe usedin calculatinganimportancevaluefor a shadev vol-
ume: the distancdrom the centerof the volumeto the cameraandthe projected
sizeonthe screerof its boundingbox. Theideabehindthe rst factoris thatwe
wouldrathercull away adistantshadev volumethanacloseone,asit is likely the
viewerwill focusmoreongeometryin theforegroundthanin thebackgroundThe
ideabehindthe secondfactoris that we would rathercull away smallershadov
volumesasthey contritutelessto the nal imagethanlargerones.

Determininghow to weighthesetwo factorsrequiressometweakingandde-
pendson the sceneain question.Sometimes large shadaev in the backgrounds
much more importantthan a small one closeto the camerawhereasn scenes
whereeachshadav volumeis approximatelythe samesizeonemightwantto sort
thevolumespurelyby distanceo thecamera.

73

Chapter 6

Implementation details

To actuallyimplementhetechniquesliscussedofarin thisthesiscanbeadaunt-
ing taskwith lots of potentialpitfallsandcaveats.In this chapteme presensome
implementatiordetailswhich wasleft outin the previouschapterdor clarity rea-
sons. We begin by giving the readeran overview of the gameenginewe have
incorporatedhetechniguesnto. Thenwe presentisolutionto theseeminglysim-
ple problemof samplinga screersizedtexture mapat coordinatesorresponding
to the currentpixel beingshadedn the rendertarget. Finally, we presenthefull
CGsourcecodefor thepixel andvertex shadersequiredto rasterizeéhepenumbra
wedgesnto theLl buffer.

6.1 The Peroxideengine

As oneof our maingoalswith thisthesiswasto testthe applicability of softshad-
ows in atrue gameernvironment,we implementedur versionof the soft shadav
algorithmwithin our gameengine- the PeroxideEngine A full gameengineis a
very comple applicationanda detaileddescriptionof its componentss beyond
thescopeof thisthesis.Still it is importantto realizethattheaddedcompleity of
a gameenginecomparedo a simpletestapplicationcansigni cantly affectthe
measuregerformancef thetechniqueslin this sectionwe give ashortovervien
of the differentcomponentaindfeaturesof our gameengineto give thereaderan
understandingf the frameawork in which our experimentshave beenconducted.

Platform and API independence

The PeroxideEnginehasbeendevelopedin a platformindependentvay, which
meanghatit canrun on multiple platformsusingsereraldifferentAPIsfor graph-
ics, soundandinput. At the moment,the enginerunson Linux, using SDL and
OpenGLfor graphicsandinput, aswell asunderWindows wherethe DirectX

74

framework is usedinstead. This crossplatform featureis achieved by wrapping
all APl andplatformspeci c codein 'drivers'thatexposeall functionalitythrough
a commoninterfaceto the maingameengine.A numberof suchdriversexist in
orderto provide accesso the differentcateyoriesof platformspeci c code:

OS ProvidesOS speci ¢ codefor timing functions, le selectiondialogs,dialog
boxesetc.

GfxDriver Providesanabstractiorio everythinghaving to dowith graphics.Ex-
amplesof this includeswrappersfor vertex buffers, statemanagementn
thegraphicscard,drawving code,andshademanagement.

InputDri ver Providesaninterfaceto the mouseandkeyboard.Doesalsoimple-
mentfunctionalityto bind callbackfunctionsto key or mouseevents.

SoundDriver Providesaninterfaceto the playbackof music les, aswell asto
2d and3d soundeffects.

NetDriver Provides an interfaceto networking code, which is requiredfor a
client/serer application.

The maingameengineshouldcompileon ary platformwith a C++ compiler
and STL. The driversdescribedabove are the only componentavhich mustbe
reimplementedo supporta new platform.

This portability comesat a price though. Eachcall to codewithin oneof the
driversis wrapped,typically with a virtual function call, andis thusa bit more
expensve than a similar call in a platform speci ¢ application. In a properly
optimizedgameenginetherewill berelatively few callsto thedriversperframe,
but if for examplethe graphicsdriveris usedin a suboptimalway (lots of render
callsfor example)the abstractiorlayer causes performancelrop.

The rendering framework

The PeroxideEngineusesan effect framework for rendering. Before rendering
cantake placean effect must be obtainedfrom the graphicsdriver. If the de-

siredeffectexistsin aversioncompatiblewith thedetectechardwarethegraphics
driver returnsa pointerto the effect. The effect providesbegin andend methods
alongwith a mechanisnfor settingparametershatvarieswith the objectsbeing
rendered.Any geometryrenderedbetweenthe 'begin' and'end’ callsis dravn

asspeci ed by the effect. If multiple passe®verthe geometryarerequiredfor a

certainimplementatiorof an effect, the effect interfacewill specifyexactly how

mary passesrerequiredand,if differentversionsof the geometryareinvolved,

theeffectwill specifytheorderin whichtheapplicationshoulddrav them.

75

Onebene t of this systemis that multiple renderpathscanbe implemented
for variousgenerationf graphicscards,eachusing the latestfeatureson the
hardwarefor thefastesandbestlookingimplementatiorof thedesiredeffect. For
examplein our enginewe have threedifferentimplementation®f a watereffect,
rangingfrom a simpletexturemappingto a comple pixel shadeimplementation
thatonly runson cardswith ps2.0or better As betterhardwarebecomeswvailable
it is easyto implementa new versionof the effect without makingary changes
in the actualgameengine. In addition, if a certaineffect doesnot exist for the
detectechardwarethe gameenginewill know this andwill skip the renderingof
thegeometrythatneedghe effect.

Dynamic worlds

The PeroxideEngineis built with large, fully dynamic,indoorandoutdoorervi-
ronmentsn mind. As aresult,no assumptiongsre madeaboutthe relationships
betweenthe entitiesthat make up the world. Every objector light canfreely be
movedaroundwithoutary signi cant performancelecreaseThis entailsthatall
shadavs aredynamic.For outdoorscenesafully dynamiclandscapeomponent
hasbeenimplementedthat allows for real-timemodi cations to shape texture
andcolor amongotherthings. This allows for game-playeffectssuchascraters
thatappeaif abombis dropped,or permanenscorchmarkscausedy res. A
dynamicday-g/cle hasbeenimplementedvherea numberof key-framesspec-
ify propertiessuchasthe ambientlight, the sun's position,color andstrengthas
well asvariousfog settingsfor speci c timesof theday This dynamicworld is
ef ciently managedhroughascendreestructureasdescribedn chapters.

Script languages

Two customscripting languageshave beendevelopedfor the PeroxideEngine.
The rst is calledPxdScriptandis a programmindanguagewith a C-like syntax.
ThroughPxdScriptit is possibleto manipulatehe gameengineandthe entitiesin
ascenePxdScripts typically usedto implementgame-playevents, Al scriptsfor
the NPC$, andservices Servicesare scriptsthatrun continuouslyin the scene
for exampleto rotatethe cogsof a machineor thewingsof awindmill. A virtual
machineexecutesPxdScriptprogramsand allow pseudo-paralleéxecutionand
saving andloading of running programs. The secondanguagen the engineis
usedfor scriptingdialogswith the NPCsin the world througha very high-level
syntax.

INon PlayerCharacterscharactergontrolledby the engineasopposedo the charactecon-
trolled by the playet

76

Additional features

In additionto the featuresmentionedabove, the PeroxideEngineincludesa few
componentghat we will only mentionvery brie y, asthey have limited or no
relevanceto the topics coveredin this thesis. Still, they are mentionedhereas
they indirectly affect the measuregberformancef the soft shadaev algorithmby
imposinga constanCPU overheadeachframethatwould notbe presenin atest
application.

We have implementeda GUI framework, using accelerate®d graphics,in
which it is possibleto setup andto renderwindows with different'skins' or
'looks'. We usethis GUI toolkit for someof our in-gamewindows aswell as
for someof our editing tools. We have alsoimplementeda e xible and highly
parameterizegarticle systemaswell asa systemfor cloth animation. The Per
oxide Enginealsoincludesananimationsystemthatallows for skeletalanimation
with up to four weightsper bone,anda systemfor mixing animationsallowing
for smoothblendsfrom oneanimationto another All 3d modelsandanimations
areexportedfrom 3d studiomaxto our customle formatsusingour own export
plug-ins.

Theeditingof ourworldsis conductedn real-timeusingeditingfeaturesouilt
into the gameengine. The editing canbe performedeitherof ine on mapsthat
residelocally on the client machineor online throughan editing sener called
NetEd By connectingo NetEdit is possiblefor multiple usersto edit the same
mapsimultaneouslyThisis usefulsinceourgamemapstypically, aretoobig and
comple for asingleworld builderto handleby himself. Whentheclientconnects
to theNetEdsenerthe currentstateof themapis savedto a buffer andsentto the
connectingclient. After this pointany changes client might make to the mapis
propagatedo all connecteatlientsto keepthemsynchronized.

6.2 Calculating screen-space coordinates in a
shader

Certaingraphicalmulti-passalgorithms rst rendersomesortof informationto a
screersizedtextureandthen,in alaterpassthey samplehetextureto retrievethe
information storedin the pixel correspondindo the one currently being shaded
in therendertarget. A goodexampleof this is the soft shadev algorithmwhich
useghistechniqudwice: thewedgepixel shaderetrievesdepthinformationfrom
the extra z-buffer, andthelight pixel shaderetrievesthe light intensityfrom the
LI-buffer.

To readfrom a texture, texture coordinatehave to be available. So, reading
from a screersizedtexture presentsis with the problemof nding texture coor

77

dinatesthat will lookup the texel correspondingo the pixel thatis aboutto be
shaded.

In orderto calculatethesetexture coordinatesit is necessaryo look at the
viewporttransformatiorwhich transformsa vertex from projected-spacentothe
screen. This is an additionalstepin the transformationprocessshawvn in g-
ure A.4. The viewport transformationcorverts the coordinatedrom the range
[1::1] in projected-spacéo actualpixel coordinatesn the image,f.ex. to the
range[0::1023] [0::767] Asit is possibleto mapprojected-spact ary rectan-
gularareaof the screenthe imageresolutiondoesnot necessariljnave to match
thescreerresolution.

Whenthe viewport is equalto the full screensize,andhasfull depthrange,
theviewporttransformatiommatrix V is givenas(see[Mic] Viewport Scaling):

w9 g9o°

_Bo %OOZ

V‘Eo 0 10 (6.1)
Y 5 01

whereW andH arethewidth andheightof the screenn pixels.

Letpbeapointin projected-spacp,,, 2 [1::1]). The nal screen-spageo-
sition p®(in pixels)is calculatedy applyingtheviewporttransformatiomatrixto
thehomogeneouprojected-spaceoordinatesTheresultis nally homogenized
into Cartesiarcoordinatesy dividing with p,:

pOZ pV = ﬂ
(PV)w Pw
For atransformatiomrmatrixV asgivenin equatiort.1,andfrom thede nition

of p%in 6.2,we nd that:

(6.2)

h [
PV _ BT PR Bt PuiPeib
Pw Pw
+
" #
1 pW 1, pH P,
°C = Z(E—+ W) S(X—+H)=%1 6.3
p 2o)2(O)IOW (6.3)

To sampleatexture,thesuppliedtiexturecoordinategretransformednto texel
coordinates asfollows (seg[Mic] Directly MappingTexelsto Pixels):

tyy = CySy + 05 (6.4)

20penGLfragmentprogramshave thesecoordinatesccessibl@asa built-in variablebut thisis
notthe casefor DirectX pixel shaders.

78

© O N O N WN R

wherec is the texture coordinatesands is the texture size. Sincewe wantto
samplea screersizedtexture we have thats, = W ands, = H. To samplethe
correcttexel in the screersizedtexture we needto calculatetexture coordinates
Gy Sothatpl, = ty:

0 —

Py = Uy
= nysxy+ 05
m
O 05
Gy = v
2 1 W +W) 05 i PH L H 0'53
_ 4aGh W) 05 5(o+ H) 05,
W ’ H
ZM W pH L H 0 3
_ 42pw+7 '5.(e 2 '55
W ’ H
: . #
_ Px . . B .
= —+05 —; —+05 —
200 2W' 2p, 2H
P 1. p 1
= ™ = + 05 — == + 05 - 6.5
2 Pu W2 P 2H (6.5)

Unfortunately we have to evaluateequation6.5 in the pixel shaderfor each
pixel, ratherthanin thevertex shadefor eachvertex. It is notpossibleo calculate
the equationin the vertex shadebecausdinearly interpolatinga andb andthen
calculatinga=bis not the sameas interpolatinga=b However it is possibleto
calculatethe expressionsy and %y in the vertex shaderandinterpolatethese
values. Furthermorethe expression€):5 ﬁ and0:5 ﬁ are both constant
andcanthusbe uploadedo a constantregisterin the pixel shader All the pixel
shademustdo is to divide the interpolated- and %y by the interpolatedp,,,
andthenaddthe constanuv displacementThis is trivially vectorizableandcan
be implementedn two assemblemstructions(onereciprocalandone multiply-
and-addnstruction,see[Mic] Instructions- ps_2_0).

The CG codethatimplementgheaboveis shaovn here:

/I Vertex shader
struct appin {
float4 position : POSITION;

I3

struct wedgeOut {
float4 position: POSITION;
float4 posData: TEXCOORDO;

I3

79

10
11
12
13
14
15
16
17
18
19
20
21

© O N o U A~ WN P

T
o h W N PO

wedgeOut main(appin N,

uniform floatdx4 worldViewProj : register(c0))

{
wedgeOut OUT;

OUT.position = mul(IN.position, worldViewProj);

/I The line below implements the per-vertex part
OUT.posData = OUT.position;

OUT.posData.y = -OUT.posScreenSpace.y;
OUT.posData.xy *= 0.5; return OUT,

}

/I Pixel shader
struct appin {
float4 position: POSITION;
float4 posData: TEXCOORDO;

I3

of the lookup

float4 main(appln IN, uniform float2 uvOffset : register(c0))

{

/I Calculate screenspace UV coords
float4 temp = IN.posData;
float2 screenSpaceUV = (temp.xy/temp.w) + uvOffset;

/I sample the screen-sized texture:

6.3 The soft shadaw algorithm

technique:

In this sectionwe shaw the applicationcodeissuingthe renderingcalls andthe
vertex and pixel shadersusedin the soft shadev algorithm. The algorithmis
describedin chapter4, and an overview of it is given in section4.1.6, so we
will notrepeathedescriptionhere,but we will clarify someof the moreobscure

© O N o U A WN PR

PR R R
AN w N R O

detailsin theimplementation.

Application code

/I the hard shadow part:

Effect* hardShadowEffect = gfxdriver->getEffect("hardWedge");

if (hardShadowEffect) {

/Il for all passes (=2):

for (int i = 0; i < hardShadowEffect->getNumPasses();
hardShadowEffect->begin(i);

for (int j = 0; j < shadowVolumes.size(); j*++)
shadowVolumesj->renderHardShadow();
}

}

hardShadowEffect->end();

80

i++)

{

{

15}
16
17 /I the wedges:

18 wedgeEffect = gfxdriver->getEffect("wedge");

19 if (wedgeEffect) {

20 /I parameters for wedge

21 VECTORVviewSpaceLightPos = gfxdriver->getViewMatrix() * light->GetPosition();
22 float lightRadius = light->getRadius();

23

24 gfxdriver->clear(COLOR(), CLEAR_STENCIL_ONLY);

25

26 /I Draw all volumes:

27 for (int i = 0; i < shadowVolumes.size(); i++) |

28

29 /I render each wedge:

30 for (int j = 0; j < shadowVolumesi->getNumWedges();) {

31

32 /I Inner wedge half

33 wedgeEffect->begin(0);

34 shadowVolumesi->renderinnerWedgeNr(j);

35 wedgeEffect->begin(1);

36 wedgeEffect->setParameter(EP_LIGHT_POSITION, viewSpaceLightPos/lightRadius);
37

38 wedgeEffect->setParameter(EP_LIGHT_RADIUS, VECTORA4D(lightRadius,0,0,0));
39 shadowVolumesi->renderinnerWedgeNr(j);

40

41 /I Outer wedge half

42 wedgeEffect->begin(2);

43 shadowVolumesi->renderOuterWedgeNr(j);

44 wedgeEffect->begin(3);

45 wedgeEffect->setParameter(EP_LIGHT_POSITION, viewSpaceLightPos/lightRadius);
46 wedgeEffect->setParameter(EP_LIGHT_RADIUS, VECTORA4D(lightRadius,0,0,0));
47 shadowVolumesi->renderOuterWedgeNr(j);

48 }

49

50

51 wedgeEffect->end();

52}

Theapplicationcodeusegheeffectframenork describedn section6.1,which
is why the statesettingsarenot visible in the codebelov. The shadav volumes
arerepresentedy C++ objectswith a numberof corveniencemethods.F.ex. it
is possibleto getthe numberof wedgesandto renderthe innerandouterhalf of
eachwedgeseparately

The applicationcoderenderstwo things: the hard shadev and the wedges.
The wedgerendering,(lines 33-47), shaws that four rendercalls are usedper
wedge,two for eachwedgehalf. Thetwo rendercalls for eachhalf accomplish
the culling of fragmentsthat are not in the penumbraarea,asit is describedn
section4.1.3.

Wedgevertex shader

1 struct appin {
2 float4 position : POSITION;

81

© O N o 0 b~ W

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

float4 edgePoint0 : TEXCOORDO;
float4 edgePointl : TEXCOORDI;

3

struct wedgeOut {

float4 position: POSITION;

float4 posData: TEXCOORDO;
float3 posViewSpace : TEXCOORD1,

float3 edgePoint0 : TEXCOORD2;

float3 edgePointl : TEXCOORDS3;

float r3DepthViewSpace : TEXCOORD4;

h

wedgeOut main(appin IN, uniform float4x4 worldViewProj : register(c0),
uniform floatdx4 worldView . register(c4),
uniform float rcpLightRadius . register(c10)) {

wedgeOut OUT;
OUT.position = mul(IN.position, worldViewProj);

/I Calculate screenspace position
OUT.posData = OUT.position;
OUT.posData.y = -OUT.posData.y;
OUT.posData.xy *= 0.5;

OUT.posViewSpace = mul(IN.position, worldView).xyz;
OUT.r3DepthViewSpace = OUT.posViewSpace.z;

OUT.posViewSpace.xyz *= rcpLightRadius;

OUT.edgePoint0 = mul(IN.edgePointO, worldView).xyz * rcpLightRadius;
OUT.edgePointl = mul(IN.edgePointl, worldView).xyz * rcpLightRadius;
return OUT,;

The vertex and pixel shadersusethe techniquedescribedin section6.2 to
calculatethe screen-spaceoordinateswhichis seenn vertex shadetines24-26
and pixel shaderline 19. The edgepointsarepassedo the pixel shadervia the
vertex data(in texture coordinate® and1l, line 3 and4). Sincethe verticesare
not sharedbetweenvedgesthesedataareconstanfor all trianglesinvolvedin a
wedge whichis why thereis norisk thatinterpolationwill changethesevalues.

ThercpLightRadius variableis the reciprocalvalue of the radiusof the
currentlight, andis usedto transformthe view-spacepositionandthe edgepoint
0 and1l, (seelines 30—-33),into unit spherespaceasdescribedn section4.2.1.
We usethe reciprocalvalue becauseét allows usto usemultiplication insteadof
division, saving anassemblynstruction.

Wedgepixel shader

struct appin {

float4 position: POSITION;

float4 posData: TEXCOORDO;
float3 posViewSpace : TEXCOORDI,;

82

float3 edgePoint0 : TEXCOORD?2;
float3 edgePointl : TEXCOORDS;
float r3DepthViewSpace : TEXCOORD4;

K
float4 main(appln IN, uniform sampler2D depthMap . register(s0),
uniform sampler3D visMapSameSide : register(sl),
uniform sampler3D visMapDiffSide . register(s2),
uniform float3 lightPos : register(c0),
uniform float2 uvOffset . register(c3),
uniform float rcpLightRadius . register(c4),
uniform float4 resultModulator: register(c5)) : COLOR{
/I Calculate screenspace UV coords
float2 screenSpaceUV = (IN.posData.xy/IN.posData.w) + uvOffset;
/I Sample depth value
float depthValue = tex2D(depthMap, screenSpaceUV).r;
/I Find position in view-space of geometry behind this wedge pixel
float3 geometryPos = IN.posViewSpace * (depthValue / IN.r3DepthViewSpace);
/I Find plane through edge and geometryPos
float3 geoPlaneNormal = normalize(cross(IN.edgePoint0 - geometryPos, IN.edgePointl
/I distance from plane to lightPos (if within range -1,1 it intersects the light):
float dO = dot(lightPos - IN.edgePoint0, geoPlaneNormal);

/I Project lightPos to geoPlane:
float3 basePoint = lightPos - d0 * geoPlaneNormal;

/I Find normal of lightPlane
float3 lightPlaneNormal = normalize(geometryPos - basePoint);

/I Project e0 and el onto lightPlane

float distToPlane = dot(IN.edgePoint0 - basePoint, lightPlaneNormal);

float3 edgePointOProj = IN.edgePoint0 - distToPlane * lightPlaneNormal;

distToPlane = dot(IN.edgePoint1l - basePoint, lightPlaneNormal);

float3 edgePoint1Proj = IN.edgePointl - distToPlane * lightPlaneNormal;

/I Determine if the projected points are on the same side of base point or not.
float3 baseToEOp = edgePointOProj - basePoint;

float3 baseToElp = edgePointlProj - basePoint;

/I Calculate distance from base point to the two projected points.

float dl1 = length(baseToEOp);

float d2 = length(baseToElp);

/I The look-up texture coordinate:
float3 uvw = float3(abs(d0), di, d2);

/I Sample the correct map
float coverage;
if (dot(baseToEOp, baseToElp) > 0) {

coverage = tex3D(visMapSameSide, uvw).r;
}
else {

coverage = tex3D(visMapDiffSide, uvw).r;
}

=

/I Calculate the changes to make according 0 coverage.

83

- geometryPos));

67
68
69
70

float4 result = float4(0,coverage,0,coverage) * resultModulator;

return result;
}

Conceptuallythe pixel shadercanbe dividedinto threeparts: nding the ge-
ometry(or fragment)position(until line 25), calculatingthe coveragevaluebased
on the geometryposition(until line 65), andusingthe coveragevalueto give the
desiredoutput. The geometrypositionis found by usingthe pixel positionand
readingthe depthvaluefrom thedepthbuffer asdescribedn section4.1.4.

Calculatingthe coveragevalueis the mostexpensve part. A high-level de-
scription of the computationis found in section4.1.4, and here we will de-
scribeit in further detail. First, we nd the geoPlanepr ratherthe normalto
it (geoPlaneNormal atline 28). With this,we can nd d,: thesigneddistance
from geoPlanéo thelight source We canthenused, to nd thebasePoinby pro-
jectingthelight sourceontothe geoPlandline 34). Thenormalto thelightPlane
cannow befoundasthenormalizedvectorfrom thebasePointo thegeometrypo-
sition (line 37). We thenprojectthe edgepointsontothelightPlaneandform the
two vectorsfrom thebasepointto eachof theprojectededgepoints(baseToEOp
andbaseToE1lp). Thesewo vectorsareusedfor nding d, andd, aswell asfor
calculatingwhetherthe projectedpointsare on the sameor differentsidesof the
basePoint.The projectededgepointsareon the samesideif the dot productbe-
tweenthetwo vectorsaregreaterthanzero(line 59). Knowing this, andknowing
the valuesof dy, d; andd, we cansamplethe correctfunction mapto lookupthe
coveragevalue.

Usingthecoveragevalueto givethedesiredutputis very simple. We wantthe
coveragevalueoutputtedto eitherthey or the w channeldependingon whether
thefragments in theinneror outerpenumbraegion. Sincethisversionof thesoft
shadaev algorithmusesthe split wedgegeometrywe know wherethe fragments
are locatedwithout having to make ary calculations. Consequentlywe could
have madetwo slightly differentversionsof the pixel shader;one that outputs
the coveragevalueto the y and one that outputsto the w channel. Insteadwe
usealittle trick. TheresultModulator variablecontainseither(0; 1; 0; 0) or
(0; 0; 0; 1) andline 67 thereforemasksout the correctoutputchannel.This trick
costsanextrapixel shadeinstructionbut allows usto usethesameshadefor both
halves,thussaving the overheadf switchingshadersandallowing usto maintain
onepixel shadeinsteadof two.

6.4 The per-loop soft shadaw algorithm

This sectionshavs someof the codefor our implementatiorof the perloop soft
shadev algorithmdescribedn section4.4. Someof the codeis identicalto the

84

codeof the original algorithmandwe will only discusshe codethatis different
here.As thevertex shadein thisversionis identicalto theoriginalit is notshowvn.

Per-loop application code

Effect* wedgeEffect = gfxdriver->getEffect("wedge");

if (wedgeEffect) {
gfxdriver->setRenderTarget("coverageTexture");
gfxdriver->clear(COLOR(0,0,0,0), CLEAR_COLOR_ONLY);

/I For every shadow volume...
for (int j = 0; j < shadowVolumes.size();) {
ShadowVolume* volume = shadowVolumesj;

/I for every silhouette loop...
for (int loopNum = 0; loopNum < volume->getNumLoops(); loopNum++) {

/I Clear softDataTexture
gfxdriver->setRenderTarget("softDataTexture");
gfxdriver->clear(COLOR(0,0,0,0), CLEAR_COLOR_ONLY);

/I Hardshadow
wedgeEffect->begin(0);
volume->renderHardLoopNr(loopNum);
wedgeEffect->begin(1);
volume->renderHardLoopNr(loopNum);

VECTORVviewSpaceLightPos = gfxdriver->getViewMatrix() * light->GetPosition();
float lightRadius = light->getRadius();

/I Stencil out the penumbra area
wedgeEffect->begin(2);
volume->renderWedgeLoopNr(loopNum);

/I Run PS in the stenciled out area calculating loop-local coverage into softDataTexture
wedgeEffect->begin(3);

wedgeEffect->setParameter(EP_LIGHT_POSITION, viewSpaceLightPos/lightRadius);
wedgeEffect->setParameter(EP_LIGHT_RADIUS, VECTORA4D(lightRadius,0,0,0));

volume->renderWedgeLoopNr(loopNum);

/I Transfer the calculated value to coverageTexture
wedgeEffect->begin(4);

wedgeEffect->end();

The applicationcode is a lot different from the original algorithm since
we renderper silhouetteloop; the for-loop in line 12 accomplisheghis. The
shadev volume objectsusedhere are also differentfrom the onesin the orig-
inal algorithm as they must supportperloop operationsinsteadof perwedge
operations. Also note that the coveragetransferstepis accomplishedn the
wedgeEffect->begin(5) callin line 38which makestheappropriateender

85

© O N OO M WN PR

GOl a g A DS B D A D DD DD O®®K®EMWWWENNRNNNNRNRNNRNERR B 2 B B B
BONPOOCO®IDITIREWD®DNR O OO®IONKEONRLOSOO®DdDNODANNE®NRLO ©O®ONO®O A RN R O

call (ascreen-sizequad).

/

Per-loop wedgepixel shader

Pixel shader for wedges

struct appln {

float4 position: POSITION;

float4 posData: TEXCOORDO;

float3 posViewSpace : TEXCOORD1I,;
float3 edgePoint0 : TEXCOORD2;

float3 edgePointl : TEXCOORDS3;

float r3DepthViewSpace : TEXCOORD4;

h
float4 main(appln IN, uniform sampler2D depthMap . register(s0),
uniform sampler3D visMapSameSide : register(sl),
uniform sampler3D visMapDiffSide : register(s2),
uniform float3 lightPos . register(c0),
uniform float2 uvOffset . register(cl)) : COLOR({
/I Calculate uv coords for screen position
float2 screenSpaceUV = (IN.posData.xy/IN.posData.w) + uvOffset;
float coverage = O;

/I Sample depth value

float depthValue = tex2D(depthMap, screenSpaceUV).r;
/I Find position in view-space of geometry behind this wedge pixel
float3 geometryPos = IN.posViewSpace * (depthValue / IN.r3DepthViewSpace);

/Il Find plane through edge and geometryPos
float3 geoPlaneNormal = normalize(cross(IN.edgePoint0 - geometryPos, IN.edgePointl

/I Does plane intersect with light sphere?
/I distance from plane to lightPos:
float distLightToGeoPlane = dot(lightPos - IN.edgePoint0, geoPlaneNormal);

/I Project lightPos to geoPlane:
float3 basePoint = lightPos - distLightToGeoPlane * geoPlaneNormal;

/I Find normal of lightPlane
float3 lightPlaneNormal = normalize(geometryPos - basePoint);

/I Project e0 and el onto lightPlane

float distToPlane = dot(IN.edgePoint0 - basePoint, lightPlaneNormal);
float3 edgePointOProj = IN.edgePoint0 - distToPlane * lightPlaneNormal;
distToPlane = dot(IN.edgePointl - basePoint, lightPlaneNormal);

float3 edgePoint1Proj = IN.edgePointl - distToPlane * lightPlaneNormal;
float3 baseToEO = edgePointOProj - basePoint;

float3 baseToEl = edgePointlProj - basePoint;

float dotProd = dot(baseToEO, baseToE1);

float distToEO = length(baseToEO);
float distToE1 = length(baseToE1l);
float3 uvw = float3(abs(distLightToGeoPlane), distToEOQ, distToE1);

86

geometryPos));

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

© 0N U N WN R

NP R R E R R R R R R
SO ©® N O® U~ WNPFR O

if (dotProd > 0) {

coverage = tex3D(visMapSameSide, uvw).r;
else {
coverage = tex3D(visMapDiffSide, uvw).r;

}

/I Use coverage value calculated
float4 result;

/Il Let distLightToGeoPlane decide whether we are in inner or outer
if (distLightToGeoPlane > 0) {
/I Outer region - add coverage and tell that we are outside
result = float4(0,1,coverage,0);
}
else {
/I Inner region - subtract coverage
result = float4(0,0,0,coverage);
}

return result;

region

The pixel shadelis almostidenticalto the original algorithm,the only differ-
enceis how the calculateccoveragevalueis used,(seeline 67). If thefragmentis
in the outerpenumbraegion, we addthe coveragevalueto thez channelandadd
oneto they channel.They channeis latertestedby the coveragetransfershader
to determinavhethemwe areinsideor outsidehardshadev. Themethodfor doing
thisis describedn section4.4. If thefragmentis in theinnerregion, we addthe
coveragevalueto thew channel.

The coverageTransfer pixel shader

struct appin {

float4 position : POSITION;

float2 texCoords : TEXCOORDO;
h

float4 main(appin IN, uniform sampler2D softDataMap : register(s0))

{

float4 softDataValues = tex2D(softDataMap, IN.texCoords);
float coverage = softDataValues.z - softDataValues.w;

if (coverage == 0)
coverage = softDataValues.x;

else if (softDataValues.y == 0) {
/I Inside hardshadow
coverage += 1;

}

coverage = saturate(coverage);

87

COLOR

21
22

© O N o U N WN R

W W W W W WRNMNDNNNNNNNDNDNNERERRRRERRPRPRPE
g B W NP O O 0w ~NOO O~ WNRPOOOOWNOOOORAWNERE O

return float4(coverage, 0, 0, 0)

}

The coverageTansfemixel shadercalculateghe Ll valuefor a singlesilhou-
etteloop. ThelLl valueis the differencebetweerthe positve andnegative cover-
agecontritutions(thez andw channelgespectrely, seeline 10). If theLl value
is zero,we assumehatwe areoutsidethe penumbraareaandwe usethe umbra
(or hardshadav) valuewhich is foundin the x channel(line 13). If theLl value
is differentfrom zerowe areinsidethe penumbraareaandthey channelells us
whetheror notwe arein hardshadev asdescribedabore. Whenin hardshadaev,
we addoneto theLl value(line 16).

6.5 Vertex shadershadown volumes

Herewe shav the vertex shadercodewhich extrudesthe VS shadev volumesas
describedn section3.3.3.

struct appin {
float4 position : POSITION;
float4 normal : NORMAL,;

h

struct vertout {

float4 position : POSITION;

h

vertout main(appin IN,
uniform floatdx4 worldView . register(c4),
uniform float4x4 proj : register(c8),
uniform float4 viewSpaceLightPos . register(cl2),
uniform float lightRange . register(c13))

{

/I Calculate view-space position and normal

float4 viewSpacePos = mul(IN.position, worldView);

float3 viewSpaceNormal = mul(IN.normal.xyz, (float3x3)worldView);

/I Calculate extrusion vector

float4 extrusion = viewSpacePos - viewSpacelLightPos;

extrusion.w =0

float distToPoint = length(extrusion);

extrusion = normalize(extrusion) * max(0, lightRange-distToPoint);

/I Calculate final position:
float dotProd = dot(viewSpaceNormal, extrusion.xyz);
float4 finalViewSpacePos = (dotProd<0) ? viewSpacePos : viewSpacePos + extrusion;

/l Project final view-space pos

vertout OUT;

OUT.position = mul(finalViewSpacePos, proj);
return OUT,;

88

Lines 22—-25 calculatethe extrusion vector for the vertex. Line 29 chooses
betweenletting the vertex stay at its normal position or extruding it basedon
whetherit is front or backfacingto thelight. Notethatthe extrusionis performed
in view-spaceandthe projectionmatrix is appliedafterwards.

89

Chapter 7

Conclusion

In this thesiswe have investigatedthe theoreticaland practicalaspectf both
hardandsoftreal-timeshadavs,andwe have implemented¢hemin afull- edged
moderngameengine.In this chapteywe presenta compactsummaryof our key
resultsand suggestuture work that would speedup the presentedsoft shadov
algorithmsaswell asexpandthe classof volumelight sourceghatcanbeused.

7.1 Results

We have implementedhe soft shadav algorithm suggestedy Akenine-Moaller
andAssarssoim [AMAO2], [AAM03] andfADMAMO3] anddescribedn chapter
4. The algorithm calculatespenumbrawedgesfor eachsilhouetteedgefrom a
givenlight source.Thepenumbravedgesarerasterizednto theLl buffer usinga
pixel shader The LI buffer holdsa visibility factorfor eachpixel onthe screen,
andthis factoris usedin a subsequerpassto modulatethe contritution from the
light. Thepenumbravedgealgorithmimplementsagenerakolutionfor real-time
softshadevsin simplesceneswvith arbitraryshadev casters.

Assumingsphericalight sourcesve have developedanovel techniquéor cal-
culatingthe coveragevalueasdescribedn section4.2. The coveragecalculation
is the mosttime consumingpartof the pixel shaderbut with our optimizationthe
lengthof the pixel shadelis reducedrom 63to 43 instructions.Furthermorethe
amountof texture memoryrequiredfor look-up tablesis reducedfrom 2MB to
128KB.

We haveidenti ed severalproblemdn thealgorithm,themostimportantbeing
thateachwedgemustbe renderedseperately This is a consequencef the need
to split eachwedgein halves as describedn section4.3.3. The large amount
of rendercalls resultsin a severe CPU overheadthat becomeghe bottleneckin
the algorithm for complex scenes. To overcomethe CPU bottleneck,we have

90

developeda novel versionof the algorithmthatis ableto renderall wedgesn a
silhouetteloop asa singlebatch. The perloop algorithmis describedn section
4.4. As describedn sectiord.5,thisversionof thealgorithmis GPUIlimited rather
thanCPUlimited andasGPUscurrentlyevolve fasterthanCPUs,we believe this
Is aninterestingrait. In its currentform the perloop algorithmunfortunatelyonly
allows shadaev casterghatproducecorvex silhouetteloops.

We have implementedboth the original and our perloop algorithmin our
gameengine,andwe have testedthe techniqueson realgamescenesasdemon-
stratedin screenshotB.1 to B.5. Theimagesrenderat interactve, but not real-
time, framerates. To ef ciently managehelarge amountof shadev volumesin
the gamescenesve have developedsereral culling techniqueshich ensurethat
only visible volumesareprocessedasit is describedn chapters.

7.2 Futurework

From our work with the soft shadav algorithmwe concludethatit is not ready
for generalusein its currentform. Furtherresearchs necessarypeforeit canbe
appliedto gamegheway stencilshadevs aretoday

Performance

The mostimportantcontrikbution to the algorithmwould be to increaseits per
formance. In section4.3 we identi ed a list of problemswith the soft shadev
algorithms,someof which hadto do with the limited blendingfunctionality of
currenthardware. It is possiblethat new generation®f graphicshardware will

allow customblendingoperationdrom within pixel shadersandif so,work can
bedoneto optimizethecalculationgperformedonthe GPU.But sincetheoriginal
algorithmis CPU limited thiswill notsolve the performancegroblems.

Before our perloop algorithm can be put to generaluseit mustbe able to
handlearbitraryshadaev casters.At this time we have no ideasfor a solutionto
this problem.

We have not tried to optimize our perloop algorithm, but thereare several
waysto reducethe numberof the coveragetransferpassesandclearoperations.
Onesuchway is to split up the channelusedfor hardshadev data. This should
make it possibleto renderntwo loopsfor every coverageransfermpassandit would
effectively halve the numberof clearoperationsaswell asthe numberof execu-
tionsof thecoveragdransfempixel shaderFurthermorethecoverageransfeipass
alwaysrendersa screen-sizeduad,evenif the affectedareais just a smallfrac-
tion of the screen.This is wasteful,bothin regardto the pixel shaderxecutions

1Betweenl.5and5 FPSin a640 480resolution.

91

andthe bandwidthusage.

Ellipsoidal light sources

Anothervaluablecontributionto the algorithmwould beto extendour new cover
agecalculationtechniqueto otherlight shapeshanspheresAkenine-Mdllerand
Assarssommave implementedhreevariantsof theoriginalalgorithmwhich allows
themto castshadevsfrom bothsphericalyectangulaandeventexturedrectangu-
lar light sources[AAMO03. Our optimizedcoveragecalculationtechniques only
valid for sphericalight sourcesvhich shouldnot be a problemin mostgameset-
tings. However it is possibleto extendour algorithmto handleellipsoidallight
sources. In section4.2.1 we describehow to transformgeometryinto a space
wherethelight sources a unit spherghroughthe useof achangeof basismatrix.
For sphericalight sourcesve shav how this canbereducedo a simpledivision
by a scalar For axis-alignedellipsoidsa similar reductioninto a division by a
vectoris possiblebut for generallyorientedellipsoidstheentireCBM mustbeap-
plied. Thecostof applyingafull matrixto a pointis four pixel shadeinstructions
whereaglivision by a scalaror avectoris possiblein one.

Ellipsoidsprovide a goodapproximatiorto mary shapesandwe would with
this additionbe ableto handlesoft shadevs from for examplestrip lights. Strip
lights arecommonin mary environmentsandare quite poorly approximatecdy
spheres.

92

Appendix A
Working with 3d graphics

A.1 Terminology

In this sectionwe brie y introducesomeof the mostcommonconceptandterms
usedin 3d computergraphics.An understandingf theseconceptss crucial for
readingthis thesis.

Color buffer

At themostbasiclevel,imagesn computergraphicsconsistof anarrayof colors
- onecolor for eachpixel in theimage. Eachcolor is typically representedsing
threecolor channelsR, G and B, describingthe intensity of eachof the main
color componentsred, greenandblue. Optionally, the color canalsocontainan
alphachannelhatcanbe usedfor auxiliary informationsuchasthe transpareng
valueof the pixel. 8 bits aretypically usedfor eachchannelmakinga color 32
bits in size: an optimalsizefor a CPU asit matcheghe cacheboundariesicely
and makesit possibleto storean entire color value into memorywith a single
assemblyinstruction. As a result,32 bits areusuallyused- evenwhenanalpha
channelis not neededIn sucha case eachcolor simply containsa paddingbyte
wherethe alphainformation would normally be stored. The array of colorsis
usuallyreferredto asthecolor buffer.

Depth buffer

For 2d graphicsa color buffer is really all we need,but in 3d it is possiblefor
several surfacesto be projectedand renderednto the samepixels in the color
buffer. Thenit is necessaryo keeptrack of the spatialorderof all suchpixels
so only the front mostpixel is shavn®. As it is impracticalto keeptrack of the

1Thisis known asthe hiddensurfaceremaoral problem

93

spatialorderof all pixelsin real-timerenderinga depthbuffer or z-tuffer is used
to keeptrackof thecurrentdepthof all pixelsin thecolor buffer. Soadepthbuffer

is simply a buffer (with the samewidth andheightasthe color buffer) thatstores
the depthvalueof eachpixel currentlyin the color buffer. Whenerer a new pixel

is aboutto berenderednto the color buffer, its depthvalueis rst comparedvith

the z-buffer - this is often referredto asthe z-test Only if the new pixel hasa
depthvaluecloserto the viewer’ thanthe currentoneis it allowedto updatethe
color anddepthbuffer. Sincea fairly high precisionis neededo sortthe pixels
correctly 24 or 32 bits aretypically usedfor eachpixel in thedepthbuffer.

Stencil buffer

Currentgraphicscardsarealsoequippedwith a so-calledstencilbuffer. A sten-
cil buffer canbe thoughtof asa kind of maskthatcanbe setup to de ne which
regions of the color buffer that canbe renderedo. If f.ex. the stencilbuffer is

clearedto zeroanda circle is drawvn in the middle of it, settingthe stencilvalue
to onefor all pixelsthatthecircle covers,thenthe stencilbuffer canlaterbe con-
gured only to allow draws in the color buffer in thoseregionswherethe stencil
valueis one. In effect, we have masked out a circular region of the color buffer.

Typically 8 bits areusedper pixel in the stencilbuffer, andfor performanceea-
sonsit is usuallycoupledwith a 24 bit depthbuffer, resultingin a32 bit combined
depth-stencibuffer.

As the stencil buffer is a very importanttool for our shadev rendering,we
will cover its usea bit morein depthin the following. Therearequite a few pa-
rametergnvolvedin settingup the stencilbuffer andtwo of themarethe stencil
refeencevalueandthe stencilcompae function The stencilreferencevalueis
a constant8-bit valuethatis uploadedto the graphicscard, and for eachpixel
the correspondingaluein the stencilbuffer is comparedwith it usingthe speci-
ed comparefunction. Theresultof this comparisons a Booleanvalue. If this
Booleanis truethenwe saythatthe pixel passeshestenciltest- otherwiset fails
the stenciltest. As explainedabove it is only if the pixel passeghe stenciltest
thatit is allowedto bedrawn into the color buffer. So,giventhatwe have already
placedsomevaluesinto the stencilbuffer somehav, thosetwo parametersireall
thatis neededo usethe stencilbuffer for maskingout certainareasn the frame
buffer. In thecircle exampleabove we would setthe stencilreferencevalueto '1'
andthe compardunctionto 'equal’.

It is not possibleto rendervaluesdirectly into the stencilbuffer though. Its
valuesaremodi ed with certainstencilopemtionsthathappenvhenary of three
differentconditionsare met. Thesethreeconditionsare: whenthe stencil test

2Actually it is possiblefor theapplicationprogrammeto de ne the z-testto besomethingelse
thantheusual' less-orequal’ but this wasthe originalideabehindthe z-buffer.

94

passeswhenthe stenciltestfails; andwhenthe stenciltestpassedut the z-test
fails. For eachof thethreecasesPASS,FAIL andZFAIL astenciloperatiormust
bespeci ed. Theexactlist of availablestenciloperationgslepend®nthegraphics
cardbut the basiconesavailableon all cardsare:

KEEP- leave the stencilvalueuntouched.
ZERO - setthe stencilvalueto O.

ONE - setthestencilvalueto 1.

INCR - increasdhestencilvalueby 1.
DECR- decreas¢hestencilvalueby 1.

REPLACE - replacethe stencilvaluewith the stencilreferencevalue.

So, to setthe valuesof the stencil buffer the graphicscardis typically con-
gured notto draw in the color buffer. Thenpiecesof geometryarerenderedas
normal,with the stencilbuffer turnedon andthe stencilcomparefunction setto
‘always'. As aresult,all renderedpixelswill passthe stenciltestjustaslong as
they passthez-test.

Homogeneousoordinates

The basicgeometricaltransformationsisedin 3d graphicsare rotation, scaling
andtranslation.Both scalingandrotationin 3d canbe expressedhrougha 3x3
matrix, andin orderto scaleor rotatea 3d vectorit is simply multiplied with
the correspondingnatrix. Translation,on the otherhand,is achieved by adding
the translationvectorto the sourcevector This inconsisteng in how to apply
transformationss unfortunate- we would like to be ableto treatall threekinds
of transformationsn a consistentvay, namelythrougha vector/matrixmultipli-
cation. To overcomethis problemmostgraphicsAPIs, including both DirectX
and OpenGL,work with so-calledhom@eneouscoodinates In homogeneous
coordinatesanextra'w' components addedto the vector In 3d this meansex-
pandingeachvectorfrom threeto four vectorcomponentsy, y, zandw. Thusthe
transformatiormatricesmustalsobe expandedirom 3x3 to 4x4 if they arestill
to be multiplied to the vectors.As explainedin [FYDFH90] chapter5, usingho-
mogeneousoordinatesand4x4 transformatiormatriceswe arenow ableto also
implementtranslationsasmatrix multiplications. The mainbene t of thisis that
we now canconcatenatawholestringof transformationgto asingle4x4 matrix
andapplyall thetranslationgo a vectorsimply by multiplying it with this single
combinedransformatiommatrix. Thisis very usefulin a 3d graphicspipeline.

95

If we homaenizea pointgivenin homogeneousoordinatedy dividing each
componentvith thew componentye getavectorof theform (x; y; z; 1) andwe
call the point (x; y; z) for the Cartesiancoordinatesof the homogeneougoint.
The factthatwe're usinghomogeneousoordinatescanbe fairly transparento
the userof a 3d API suchas OpenGLor DirectX sincewe canjust de ne our
3d vectorsasusualandhave the APl assume default w valueof 1. Ontheother
hand,if we explicitly specifyaw valuedifferentfrom 1, or avectoris transformed
by the graphicspipelinedescribedelon sothatit getsaw valuedifferentfrom
1, thenthe API will homogenizehe coordinatebeforerasterisinghetrianglein
which it is used. As one cannotdivide by zero,homogeneougpointswith a w
value of zerocannotbe homogenized.However, asthe value divergestowards
in nity we de ne all suchpointsto bein nitely far away, displacedalonga ray
originatingat(0; 0; 0) andwith directionvector(x; y; z). As aresultit iscommon
to representirectionvectorsashomogeneousoordinatesvith w=0 while point
vectorsusesthe standardepresentatiowith w=1.

Fragmentsvs. pixels

Thereis a subtlebut importantdifferencebetweenfragmentsandpixels A frag-
mentis the projectionof a smallpartof a speci c triangleto a certaincoordinate
on the screenwhile a pixel is the smallestunit in theimage. The nal color of
eachpixel is a combinationof the colorsof all fragmentshatareprojectedonto
the pixel. Sometimeghe projectionof a fragmentonto a pixel simply overwrites
its currentcolorbutit is alsopossibleto havethegraphicscardblendthenew frag-
ment's color with the currentcolor of the pixel instead. This techniqueis called
frame buffer blending,andvarioussettingson the graphicscardexist that allow
theapplicationprogrammeto specifyhow this blendingshouldbe done. Exam-
ples of differentblend modesare additive blendingand variousforms of alpha
blending. In additive blendingthe color of eachnew fragmentis simply added
to the currentcolor of the pixel, while in alphabasedblendingmodesthe alpha
channelof the new fragmentis usedto decidethe weightingof a blendbetween
thenew andcurrentcolor of the pixel.

A.2 The graphics pipeline

Current3d cardsand3d APIs suchasDirectX andOpenGLrepresenthegeome-
try they renderasmeshef triangles. A trianglemeshis built from a collection
of vertices(points)in 3d andis de ned by edgeghat connectthoseverticesinto
triangles.In this sectionwe cover the variousspacesn which the coordinategor
such3d meshesanbe de ned. We also give an overview of the pipeline that

96

convertsthe geometryfrom its meshrepresentatiomo its nal representatioin
the color buffer aspixels.

Transformations

Eachmeshis typically de ned in its own local coordinatespacecalled object-
spaceor sometimesnodel-spaceln otherwords,the coordinatef the vertices
are de ned relative to a local basisthat canbe orientedin a way that makesit
practicalto de ne andeditthe mesh.In the caseof thebox shavnin gure A.1,
alocal coordinatespaceis chosenso thatthe sidesof the box are parallelto the
coordinateaxes,andconsequentiyt is easyto de ne thecoordinate®f themesh.

(0,2,2) (2.2.2)
(0,2,0) l (2,2,0)
Az
_____ — - (202
(0,0,0), 200)
X /7

FigureA.1l: Wire-frameboxin object-space

A 3d scenegenerallyconsistsof a numberof meshegplacedinto acommon
spacecalled world-space To transforma meshfrom object-spacento world-
spacea matrix calledthe world matrix is appliedto all its vertices. The world
matrix rotates scalesandtranslateghe verticesinto new coordinatesrelative to
the commonbasis. By associatingnultiple differentworld matricesto a mesh,
it canbe renderedmultiple timesinto differentpositionsandorientationsin the
scene Eachtime anew instanceof the meshis saidto be putinto theworld.

Theworld-spaces in nitely largeandonly a smallfractionof it canbevisu-
alizedonacomputerscreenTo de ne whatis seenacameras putinto theworld
with a certainposition,orientationand FOV?3.

The camerade nes a third coordinatespacecalled camer-spaceor view-
spacewith origin at the cameraposition: a z-axisalongthe viewing direction;

3FOV is shortfor Field Of View andde neshow wide the eld of visionis. Typically, a FOV
of 90 degreesis used eventhoughthe humaneye hasamuchwider eld of view.

97

a y-axis alongthe 'up' directionof the camera;and an x-axis alongthe 'right'
directionof the camera.From thesethreebasisvectorsit is possibleto createa
view matrix which hasthe effect of transforminga point from world-spaceanto
view-space. The view matrix is appliedto all verticesafter they have beenput
into world-spacey their world matrices.

The view-spaceis still anin nite 3d spaceand thus, like the world space,
only a small fraction of it canbe visualizedon a computerscreen.The camera
position, along with the FOV, de nes anin nitely deeppyramid with a top at
the cameraposition and spreadingout, away from the camera,alongthe z-axis
in theview-space.This pyramidis intersectedy two planesbothorthogonalto
theview direction,calledthe nearclipping planeandthefar clipping plane The
intersectionbetweenthe pyramid andthe nearclipping planede nes a bounded
2d areathatcanbe thoughtof asthe computerscreenputinto the 3d world. The
far clipping planeis usedto limit thevisible region of the view-spaceo a closed
volume,whichis usedin the projectionstep.Thefour sideplanesof the pyramid,
alongwith the two clipping planes,de ne a frustum shapedvolume called the
view frustumandonly geometryinsidethis frustumis deemedvisible andwill be
projectedonto the screen.Referto gure A.2 for a visualizationof the viewing
frustumandtheclipping planes.

View frustum

Near clipping plane

Far clipping plane

FigureA.2: Theview frustum

Usinga projectionmatrix the geometryis projectedirom view spaceontothe
nearclipping plane which hasthe effect of scalingdown pointsthatarefar away.

98

This is the way perspectie is introducedto theimage. Becausaet is possiblefor
two different3d pointsin theview frustumto be projectedontothe same2d point
on the nearclipping plane,the projectionmatrix alsoscalesthe z componenbf
the pointto bewithin therange[0..1]. A valueof zeromeanghatthe pointis on
thenearclipping plane,anda valueof onemeanghatit onthefar clipping plane.
This scaleddepthvaluecanthenbeusedn thez-buffer testasdescribeagbore. To
have a x edcoordinataangeof the projectedooints,independenof the FOV, the
projectionmatrix alsoscalesthe x andy component®f the pointsto lie within
the range[-1..1], with the point (0,0) being at the centerof the screen. So the
total resultof the projectionmatrixis to corvertthe view frustuminto a bounded
cubicspacecalledprojected-spacwith a x edcoordinaterangeasshovnin a2d
top-davn view in FigureA.3.

far plane
p: Ps
Projection Matrix 1.9) o o 1D
TN
’ 7 P P
near plane (-1,0) (1,0)

;; camera ; camera

FigureA.3: Projected-space

The nal corversionfrom projected-spacento the actual color buffer is
achieved by simply discardingthe z componenif the projected-spaceoordi-
nateandthen scalingthe resulting2d coordinateto the actualresolutionof the
color buffer - for example1024x768pixels.

To summarize:the meshesor objectsin a 3d sceneareinitially de ned in
theirown local spacesandbeforethey areactuallyshovn onthecomputerscreen
they go througha chainof spacetransitionsasshovn in gure A.4. In practice
all thesetransitionshappenin a single step,asthe natureof matricesallows us
to concatenat¢he world, view andprojectionmatrix into onesingle matrix that
takesa vertex all theway from object-spacénto projected-space.

Oncethegeometryhasbeenprojectedontothe screengachprojectedriangle
isthenrasterizednto fragmentsandacoloris calculatedor eachfragmentwhich

99

World Matrix

YN

Z

View Matrix

b) box in world space

x
A\ 4

a) box in object space

Projection Matrix

TN

S T
>
¢) box in view space X d) box in clipped projected space

FigureA.4: Chainof transitions

is then nally written into the correspondingpixel in the color buffer. Onceall
fragmentsof all triangleshave beenrasterizednto the color buffer theimageis
completedandcanbe shovn onthescreen.

Pipeline

Theentiregraphicspipelinecanbevisualizedasa seriesof stepsgachstepbeing
representetly aboxasshavnin gure A.5.

Framebuffer

Application \VVertex process Rasterizer Pixel Process blending

FigureA.5: Thegraphicsipeline

Eachstepis completelyself-containecanddepend®only onits input. There-
fore,if wewantedwe couldreplaceoneor moreof theboxeswith ourown custom

100

componentsAs long asthe outputof our new componentss valid asinputto the

next boxin the chaineverythingwould still work asit should. Previous graphics
cardsdid not supportcustomcomponentandoperatedolelythrougha so-called
xed functionpipelinewherethe graphicsAPIs only allowedthe programmeto

setcertain x ed parametersuchasthe differentmatriceslights, materialsetc.

The actualstepsof processinghe verticesand shadingthe fragmentswerethus
totally de ned by thoseparametersasdescribedabove.

However, on newer graphicscardsit is now possibleto install customcompo-
nentsfor the vertex andfragmentprocessingtepandthis givesthe programmer
the power to implementadwancedvertex transitionsand fragmentshadingpro-
grams,whichis necessaryor advancedgraphicseffectssuchasourimplementa-
tion of soft shadavs.

The customcomponentsre calledvertex shades and pixel shades andare
small programghatareexecutedoncepervertex or pixel respectrely. Theinput
to a vertex shaderis the datafor a single vertex of the meshwhich is currently
beingrenderedas speci ed by the applicationprogrammer This will typically
consistof a positionin object-spacea vertex normal,a diffuse color andoneor
more setsof texture coordinateshut this isn't a requirement the input canbe
arnything that ts into a valid vertex format. As a positionin projected-space
a crucialinput to the rasterizerfor it to be ableto draw the trianglesthis is also
a requiredoutputfrom ary vertex shader In additionto this position,the vertex
shadercanalsooutputotherthingsthatarecomputedon a pervertex basis.

The output from the vertex shaderis, as explainedabove, the input to the
rasterizercomponentwhich will usethe input positionsto scanlinecorvert the
triangleinto individualfragments.Therasterizewill alsodoalinearinterpolation
of all additionalinput valuesover the triangle surface,andfor eachpixel it will
call the pixel shademith theinterpolatedvaluesasinput.

The pixel shademwill then,basedon theinput, calculatea nal color for the
fragmentand outputit to the frame-tuffer componentwhich will thenblendit
into thecolor buffer. The pixel shadeicanusea numberof arithmeticinstructions
to do calculationson theinput valuesaswell assampleoneor moretexture maps
for usein its computations but in the endit mustoutputat leastonecolor, since
thatis requiredasinput to the frame-tuffer component.

Both thevertex shademandpixel shadelcomponenhave anadditionalway of
gettinginput, namelythrougha constantstorewherethe applicationcanupload
settingsthatareconstanfor all pixelsor verticesin a particularframe. The store
consistsof a numberof 4d vectorswith 32 bit oat componentandthe size of
the storedependson the hardware- but it is typically not very large*. Constant
parametersncludethe matricesdiscusseabove: the world matrix, view matrix

4Currenthardwarehasa constanstoresizebetweenl28and256slots.

101

andprojectionmatrix, aswell assettingsfor materialsandlights. All thesethings
mustbe uploadedmnanuallyto the constantstoreby the applicationprogrammer
FigureA.6 summarizesheinputsto two shadeicomponents.

pos

normal
Vertex stream Vertex shader Rasterizer Pixel shader
color

i i

coords|
Constant store

FigureA.6: Theshadeinputs

A.3 Vertex and pixel shaders

Theintroductionof vertex andpixel shadergyivesthe programmemuchgreater
expressve powerthantheprevious x edfunctionpipeline.Shadersare, however,
still a very youngtechnologywith several severelimitations. An understanding
of thesdimitationsis necssaryo beableto usethemproperly

Shaderinstructions

A standardnstructionsetfor shadersasnot yet beenestablishedWith almost
everynew generatiorof graphicscards hew instructionsareintroducedhateither
expandon the corefunctionality or exposenew featuresn thehardware.As are-

sultbothvertex andpixel shadersxist in mary differentversionsandwhile they

are all backwardscompatibleit still meansthat shaderswritten for f.ex. ps2.¢

cannotbe run on hardwarethatonly supportanolderpro le. This makesit cum-

bersometo write softwarethatboth utilizes the latestfeaturesand runson older

hardware. Either a shaderis written usingthe lowestpossibleversion(possibly
in asuboptimalway for the newestcards)or multiple versionsof the sameshader
arewritten, onefor eachhardwarepro le thatis to be supported.

51t is commonnotationto labelthe differentversionsof shadersvith thepre x 'vs' or 'ps' for
vertex shaderandpixel shadersespectiely, followedby the versionnumber

102

Anotherlimitation in currentshaderpro les is thatthereis a maximumnum-
ber of instructionslotsavailablefor eachshader For vs2.0thelimit is 256 arith-
metic instructions,and for ps2.0the limit is 64 arithmeticinstructionsand 32
texture instructions. Also, sincethereis no true branchingor loopingin ps2.0
or vs2.0,loops mustbe unrolledwith eachiterationtaking up a certainamount
of the availableinstructionslots. With this in mind it becomeglearthat heavy
optimizationis oftenrequiredto keepa shademithin its instructionlimit.

In DirectX®?, the shadersareprogrammedhroughanassembly-lile API. This
API consistof anumberof one-slotinstructionsandsomemacrosthateachtake
up multiple instructionslots. An exampleof a macrois the 'm4x4' instruction,
which transformsa vectorby a 4x4 matrix. This macrotakesup four instruction
slotssinceit canbe implementedhroughfour one-slotdot productinstructions.
Howeverthereis notadirectmappingbetweera shadeiin its assemblyform and
the actualimplementatioron the hardware,andthe macrosare not expandedoy
the runtime system. Instead the shaderis sentasa streamof tokensto a back-
end compiler implementedn the graphicsdriver. This compiler compilesthe
shadeiinto native instructions availableon the particulargraphicscard,andruns
it throughan optimizerto do optimal registerandinstructionscheduling.If the
hardware hasnative supportfor a macro,it will be ableto executeit asit is,
otherwiseit will expandit into a seriesof simplerinstructions.

The graphicsdriver usually doesa goodjob of optimizing the shadersand
withoutvery detailedknowledgeof theunderlyinghardwarethereis notmuchone
cando to facilitate the processgxceptkeepingthe shadersas shortaspossible.
Oneway of reducingthe instructioncountis to exploit thefactthatthe GPUis a
vectorbasedprocessqgrmeaningthatall instructionsoperateson 4d vectorswith
32 bit oat componentsThisis importantto keepin mind whenwriting shaders,
becaus®ftenmultiple scalaroperationcanbe pacledtogethelin asinglevector
operationjf theoperandsreproperlyarrangedn two vectors.As shovnin gure
A.7 it is possibleto addfour setsof two scalarvaluestogetherin a single'add’
assemblynstruction.

Usingatechniquecalledswizzlingit is possibleto accesgheindividual com-
ponentf eachregister Swizzlingrefersto theability to copy any sourceregister
componento ary temporaryregistercomponentandit is donebeforetheinstruc-
tion that usesswizzlingis run. An exampleof aninstructionusingswizzlingis
“mov rl, r0.xxzy, which hastheeffect of rst creatingatemporaryregisterwith
boththe x andy componensetto r0.x, the z componento r0.z andthew com-
ponentto r0.y - andthenassigninghis registerto rl. Usingexplicit swizzlingon
both sourceanddestinatiorregistersis goodpractice,sinceit providesoptimiza-
tion hintsto thegraphicsdriver. Thusit might beableto optimizethe native code

5We have usedDirectX 9.0h

103

A & ata & & ata
? 2 | — ? b, b, | == | b+b,
? + e ? G + G| ™| ctc
? 9 ? dl d2 d1+d2
a) Adding one set of floats. b) Adding four sets of floats.

FigureA.7: Vectorizationof operations

for aninstructionlike theleft onein gure A.7 if it is explicitly told thatonly the
x component®f the vectorsneedsto be addedtogether See[Rig02] for more
informationon how shader®perateon moderngraphicshardware.

Working with shaders

Althoughtheperformancef currentgraphicscardsseemsmpressveat rst sight
it is easyto write shaderghat pushthemto thelimit. It is especiallyeasyto hit
theinstructionlimit describedabore andoptimizationof shadercodeis therefore
very important. As pixel shadersare run mary times morethanvertex shaders
they shouldbe the main tamget for optimizationsand a goodway to startis to
make surethatnothingis calculatedon a perpixel basisthatis actuallyconstant
for all pixelsin the frame. Suchvaluesshouldbe uploadedo the shadethrough
theconstantegisters.Furthermorenothingthatis constantpr canbeinterpolated
linearly over an entiretriangle shouldbe calculatedin the pixel shaderasit is
bettercalculatedon a pervertex basisin the vertex shaderandtheninterpolated
by the rasterizer Examplesof valuesthat are usuallycomputedon a pervertex
basisandtheninterpolatecoverthetrianglearetexture coordinateanddiffuseor
specularcolors.

Anotherthing thatis importantto understandvhenworking with shaderss
that vertex and pixel shadersvork purely on the datathey are provided with as
input andthatthey cannotinteractin ary way with otherverticesor pixels. For
exampleit is not possiblefor a vertex shadetto checkthe positionof a neighbor
vertex andusethis informationin its own calculations.On a similar note,a pixel
shadercannotiook up the color of anotherpixel andusethis to decideits output.
Theseareunderstandablandreasonabldéimitations, but they still puta limit on
whatkind of algorithmsthatcanbeimplementednthehardwarethroughshaders.
Skinnedanimationf.ex., whereeachvertex is animatedusingoneor moretrans-
formationmatriceswithout looking at its neighborsjs possibleto implementin
a shademhile cloth animationcurrentlyisn't becauset worksthrougha spring
systenthatrelieson theability to move neighborvertices.

104

High-level shaderprogramming

Traditionallyshadersiave beenwrittenin anassembly-likklanguageasdescribed
above. As aresult,writing shadersvasa cumbersomeandslow processwith lots
of deluggingrequiredto make the shaderswvork properly RecentlyMicrosoft
andnVidia hascooperatedn developinga high-level languagdor programming
shadersmakingshadedevelopmenimucheasierfor theapplicationprogrammer
nVidia hasdubbedtheir languageCG', which is shortfor 'C for Graphics'and
Microsoft hasdubbedtheir version'HLSL' for 'High Level ShadingLanguage'.
This hasled to a greatdeal of confusionamongdevelopers but in truth the two
languagesirecloseto identicalandthetwo compilerscancompilethe samehigh-
level shadercode. Thedifferencegnainly lie in theruntimesystemgrovidedto
managehe shadersTo avoid furtherconfusionwe will referto high-level shader
codein generalas'CG shadersfor the remainderof this thesis. All the shaders
we have written for our soft shadevs implementatiorhave beenwritten usingthis
high-level language.

105

Appendix B

Screen-shots

106

FigureB.1: Cosybackyardin thecity

107

FigureB.2: Examininga box

108

FigureB.3: In thelibrary

109

FigureB.4: Pirates'treasureon asmallisland

110

FigureB.5: In themine

111

FigureB.6: Benchmarkscenes

112

FigureB.7: Single-pasys. multi-passshadavs
113

Bibliography

[AAMO3]

[ADMAMO3]

[AMAO2]

[AMHO2]

[Ass03]

[Blig8]

[BT5x]

[Car00]
[Cro77]

UIf AssarssomndTomasAkenine-Mdller A geometry-basesoft
shadev volumealgorithmusinggraphicshardware. ACM Trans-
actionson Graphics(TOG), 22(3):511-5202003.

UIf AssarssonMichael Dougherty Michael Mounier, andTomas
Akenine-Mdller An optimized soft shadev volume algorithm
with real-time performance. In Proceedingsof the ACM SIG-
GRAPH/EURGRAPHICSconfeence on Graphics hardware,
pages33—40.EurographicAssociation2003.

Tomas Akenine-Moller and UIf Assarsson. Approximate soft

shadaevs on arbitrary surfacesusing penumbrawedges. In Pro-

ceeding®f the 13th Eurographicsworkshopon Renderingpages
297-306 Eurographic#\ssociation2002.

ThomasAkenine-MoellerandEric Haines. Real-Tmerendering
A.K. Peterd_td., secondedition,2002.

UIf AssarssonA Real-Tme SoftShadowwblumeAlgorithm. PhD
thesis,ChalmerdJniversityof Technology2003.

Jameg- Blinn. Me andmy (fake) shadav. IEEE ComputeiGraph-
icsand Applications 8(1):82—86 January1988.

PhongBui-Tong. lllumination for computergeneratedictures.
Communicationsf the ACM, 1975x.

JohnCarmack.Unpublisheccorrespondance2000.

FranklinC. Crow. Shadev algorithmsfor computergraphics.In
Proceedingsf the 4th annual confeenceon Computergraphics
andinteractivetechniques pages242—248 ACM Press1977.

114

[dBVKOOO]

[EKO2]

[ERCwnN]

[FVDFH90]

[FVDFH91]

[Heio1]

[Kaj86]

[Mic]

[NRH* 77]

[Rig02]

[SKv* 92]

M. de Berg, M. van Kreveld, and M. Overmars. Computational
Geometry Algorithmsand Applications SpringefVerlagBerlin,
seconckdition,2000.

CassEveritt and Mark J. Kilgard. Practicalandrobust stenciled
shadev volumesfor hardware-acceleratestndering.Publishedat
http://developerrnvidia.com,Mar 2002.

Casstveritt, AshuRege,andCemCebengan. Hardwareshadev
mapping.Publishedathttp://deselopernvidia.com,Yearunknawn.

J.D. Foley, A. vanDam, S. K. Feiner andJ. F. Hughes. Com-
puter Graphics: Principlesand Practice Addison-Weéslg/, Read-
ing, MA, 1990. seconckdition.

JamedD. Foley, Andriesvan Dam, StevenK. Feiner andJohnF.
Hughes. ComputerGraphics Addison-Wesley PublishingCom-
pary, seconckdition,1991.

Tim Heidmann Realshadavsrealtime. IRISUniverse 18:28-31,
1991.

JamesT. Kajiya. The renderingequation. In Proceedingsof
the 13thannualconfeenceon Computergraphicsandinteractive
techniquespagesl43-150ACM Press;1986.

Microsoft Corporation. Microsoft DirectX 9.0 Documentation
http://msdn.microsoft.com/library/dedlt.asp?urldibrary/en-
us/directx9_c/directx/directx9cpp.asp.

F. E. Nicodemus,J. C. Richmond,J. J. Hsia,l. W. Ginsbeg, and
T. Limperis. Geometricconsiderationgnd nomenclaturdor re-
ectance. Monographl61, National Bureauof StandardgUS),
October1977.

GuennadiRiguetr Performanceoptimization techniquesfor
ati hardware with directx 9.0. 2002. Available from
http://lwww.ati.com/d&eloper

Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran,and
Paul Haeberli. Fastshadaevs and lighting effects using texture
mapping. In Proceeding®of the 19thannualconfeenceon Com-
puter graphicsand interactive techniques pages249-252 ACM
Press1992.

115

[Wil78]

[WIi003]

[WND* 99]

LanceWilliams. Castingcurved shadevs on curved surfaces. In
Proceeding®f the 5th annual confeenceon Computergraphics
andinteractivetedniques page270-274 ACM Press,1978.

MatthiasWloka. Batch,batch,batch: whatdoesit really mean?
2003. Availablefrom http://developernvidia.com.

Mason Woo, Jackie Neider Tom Davis, Dave Shreiner and
OpenGL ArchitechtureReview Board. OpenGL Programming
Guide: Theof cial Guideto LearningOpenGL \ersionl.2 Ad-
disonWeslgy Longmann/nc., ReadingMA, third edition,1999.

116

