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Abstract

In this thesiswe explore the possibilitiesof usingvariousreal-timeshadow
techniquesin a 3d gameengine. We describea techniqueknown asthe stencil
shadow algorithmandshow how it canbeextendedto producesoftshadowsfrom
volumelight sourcesusingpenumbrawedges.The penumbrawedgetechnique
allows for real-timesoft shadows in relatively simplescenes.

Wepresentanovel coveragecalculationtechniquefor sphericallight sources,
which signi�cantly reducesthe amount of pixel shaderinstructionsand the
amountof texturememoryrequiredfor look-uptables.

We identify a performancebottleneckin the algorithm which preventsthe
achievementof real-timeperformancein complex scenes,andwe presenta new
version of the algorithm that eliminatesthis bottleneckfor a limited classof
shadow castingobjects.

We have implementedboth versionsof the soft shadow algorithm in our
gameengine,and we comparetheir respective performanceon different hard-
ware. Someimplementationdetailsaregiven,including theCG sourcecodefor
thevertex andpixel shaderswehaveused.

We discusshow to effectively managea largenumberof shadow volumesin
a dynamicgamescenewherebothlights andshadow castersmovearoundfreely.
Finally, we give an overview of someof the limitations in graphicalhardware
anno2003thatintroduceunnessesarywork loadsonthealgorithm,thusdegrading
performance.
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Chapter 1

Intr oduction

A realistic light settingwith propershadows is very important in 3d graphics.
Withoutshadows,imagestendsto look �at andit is dif�cult (or evenimpossible),
to determinethesizeandspatialrelationof theobjectsin thescene.In theupper-
left cornerof �gure 1.1asimplesceneis renderedwithoutany shadows. Without
changingthecameraangleit is hardto determinewhereexactly thebenchis lo-
catedin the scene,but at �rst glanceit would seemthat it is standingon the
ground,a bit behindthe lamppost. Indeedthat is onepossibleinterpretationof
the image,ascanbeseenin thebottom-leftrenderingwhereshadows have been
enabled.Anotherinterpretationof theimagecouldbethata slightly smallerver-
sionof thebenchis �oating in theair a shortdistancein front of thelamppost,as
shown in theupper-right renderingin the�gure. Withoutshadowsit is impossible
to tell which of thetwo interpretationsis correct,but assoonastheshadows are
includedtherereally is nodoubt.

In a computergameshadows areimportantaswell, not just becausethey in-
creasethe level of realismandoverall quality of the graphics,but alsobecause
they canaffect thegame-playsigni�cantly. F.ex. if theplayeris requiredto jump
ontoaplatformor dodgeamoving object,shadowsprovidevery importantvisual
cluesrequiredfor theplayerto determinewhento pressthejumpor dodgebutton.
Without shadowssuchtaskscanquickly becomefrustratingandannoy theplayer
to thepointwherehestopsplayingthegame.As aresult,anenormousamountof
researchhasbeendoneon thetopic of real-timeshadow algorithms,fastenough
for usein anactualcomputergamesetin acomplex 3d environment.

Currentlymostreal-timeshadow algorithmshave beenlimited to hard shad-
ows, like thosein �gure 1.1. Hard shadows arethe resultof light sourcesbeing
modeledasasinglepointwith noareaandcanberecognizedby averysharptran-
sition from light into shadow. If light sourcesaremodeledwith an actualshape
with an areaor volume,(asf.ex. a sphere),soft shadowscanbe produced.Soft
shadowscanberecognizedby their inclusionof apenumbraregion: anareathatis
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Figure1.1: Theimportanceof shadows in a3d image

Figure1.2: Hardvs. soft shadows
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neitherfully lit nor fully in shadow. Thevisualqualityof soft shadowscompared
to thatof hardshadowsis veryhigh,asdemonstratedin �gure 1.2. It is thushighly
desirableto beableto applyreal-timesoft shadows to computergames.Unfortu-
nately, thecomputationsrequiredfor soft shadows aremuchmorecomplex than
thoserequiredfor hardshadows. To thebestof our knowledge,no releasedgame
hasutilized true,real-time,dynamicsoft shadows1.

Key results
In this thesiswe explorethepossibilitiesof applyingtrueandfully dynamicsoft
shadows to gamescenes.Wehave implemented,aswell asdevelopedseveralop-
timizationsfor, a recentsoft shadow algorithmandappliedit to ourgameengine.
Our contributionsincludea novel techniquefor calculatingcoverage valuesfor
sphericallight sources.With this techniqueweareableto signi�cantly reducethe
lengthof thepixel shader, usedfor renderingsoft shadows,aswell astheamount
of texturememoryrequiredfor the technique.We alsodiscusssomeunresolved
problemsthatstill remainwith regardto thetechnique,andwe identify a serious
performancebottleneckin thealgorithm,which will have to beaddressedbefore
the techniquecanbeappliedto actualgamescenes.Finally we presentanddis-
cussanoutlinefor anew algorithm,whichovercomesthisbottleneckfor a limited
classof shadow castingobjects.

De�nitions and assumptions
In writing this thesiswe have assumedthat the readeris familiar with common
termsandconceptsusedin 3dcomputergraphics.This includesconceptssuchas
the color buffer, z-buffer andstencilbuffer. Furthermore,it is assumedthat the
readerunderstandshow the graphicspipelineoperateson 3d meshesandmoves
themthrougha chainof 3d spaces,(oftenreferredto asthemodel-space,world-
space,view-spaceandprojected-space),beforeactuallyrasterizingtheminto the
color buffer. An understandingof homogeneouscoordinatesandhow they solve
the problemof beingableto implementtranslationaswell asrotationandscal-
ing througha 4x4 transformationmatrix is alsoassumed.Finally, the readeris
assumedto have a thoroughunderstandingof vertex andpixel shaders.Referto
AppendixA for abrief introductionto all theseconcepts.

Whenever we refer to 'current graphicscards' or ' the latestgraphicshard-
ware', throughoutthethesisthe intendedmeaningis DirectX 9.0 basedgraphics
cardssuchasnVidiasnv30-basedandATIs R300-basedcards.All thesechipsets
hassupportfor vs2.0andps2.0shaderswhich aretheminimumrequirementsfor

1'Fake' softshadowshavebeenappliedto certaingameswhereahardshadow is simplyblurred
somewhatalongtheedge.
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our implementationof thesoft shadow algorithm. Speci�cally we have usedDi-
rectX 9.0bwith aRadeon9700Prographicscard.

Thesisorganization
In chapter2 webrie�y discusshow light worksin therealworld andin computer
graphics.We introducesomethingcalledtherenderingequation: a compactfor-
mulationof how to calculatelighting thatgivesusa framework againstwhich we
cancompareour real-timesolutions. In chapter3 we give a shortoverview of
the different real-timeshadow solutionsandthenwe elaborateon stencilshad-
ows, the techniqueour soft shadow implementationis basedupon. In chapter4
we introducea techniquefor renderingsoft shadows in real-timewith theuseof
a renderingprimitivecalleda wedge, andwe presentour novel extensionsto the
soft shadow algorithm,followedby a discussionof theunresolvedproblemswith
the technique.In chapter5 we discusseshow a large amountof shadow casting
objectsin a gamesceneis ef�ciently managed,so that only thoseshadow vol-
umesthataffectsthevisible imageareprocessedandrendered.In chapter6 we
provide an overview of our gameenginewhich hasbeenthe framework for our
implementationof thesoft shadow technique,andwe presentsomedetailsof the
implementationwhich wasleft out in the earlierchapters.Finally, in chapter7,
wesummarizeour results,draw conclusionsandgivesuggestionsfor futurework
thatwould improvethesoft shadow technique.
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Chapter 2

Lighting

Oneof thegoalsof real-time3d applicationssuchasa computergameis to sim-
ulatea world andto generatereal-timeimageswhich, to a certaindegree,tricks
us into believing thatwe areactually'inside' this virtual world. Many real-time
applicationshavebeencreatedwheretheuserfeelsimmersedin thevirtual world
andconsequently, in somesense,believesthatthegeneratedimagesarereal.This
is not a resultof photo-realisticimages,asthesearegenerallyimpossibleto pro-
ducein real-timetoday, but becausethehumanbrain is capableof �ltering away
the �a ws andinconsistenciesin computergeneratedimagesandrecognizewhat
the imageis supposedto represent.Photo-realismis thereforenot necessarilyan
absoluterequirementandin someapplications,cartoonsfor instance,notevende-
sired. In otherapplicationsthough,f.ex. movies,gameswith a realisticlook and
architecturalvisualizationapplications,it is desirableto generateimagesasclose
to realityaspossibleandfor suchapplicationsit is importantto studywhy thereal
world lookstheway it does.

In this chapterwe �rst give a theoreticaloverview of local andglobal light-
ing models,introducingsomethingcalledthe renderingequationaswell asthe
conceptof a BRDF. Thenwe discusshow this theorycanbe approximatedand
appliedto real-timegraphics.In doingso,we introducea framework thatwe can
latercompareourvariouslight andshadow methodswith.

2.1 Light models

Light modelsarethemathematicalformulasusedwhencalculatingthecolorof a
point on thesurfaceof anobject.Many differentmodelshavebeenproposedand
the mostimportantdistinctionbetweenthemis whetherthey arelocal or global
models.
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2.1.1 Local models

Local light modelscomputethecolor of a point on a surfaceby consideringthe
position of the point, the propertiesof the surfacethat it is a part of, and the
propertiesof any light sourcesthatshineson it. This meansthatno otherobjects
in thescene,exceptlight sources,areconsideredneitherasblockinglight nor as
re�ecting light. This is clearly a crudeapproximation,andit will f.ex. make no
differencewhetherthereis anopaqueobjectbetweenthepointanda light-source
or not. In a morerealisticlight modelsuchanobjectwould causea shadow. In
spiteof this, local light modelsareoftenusedin real-timeapplicationsbecauseof
theminimalamountof computationsrequired,andbecauseonly localknowledge
of thescenegeometryis needed.

We startby consideringa point x0. If x0 receiveslight from anotherpoint x00,
f.ex. a light source,thenwe areinterestedin how that incominglight is re�ected.
If the eye point is placedat x we want to know how much light emittedat x00

towardsx0 is receivedby x. Figure2.1showsthissetup.

x

x'

x''

geometry

Figure2.1: Thethreepointsinvolvedin thelocal light model.

Sinceno more light canbe re�ected than is received, andsincethereis no
suchthingasnegativelight, thelight receivedby x0andthelight re�ectedtowards
x is assumedto be relatedby a factor in [0::1]. The re�ection is dependenton
the geometricrelationshipbetweenthe threepoints, an examplebeing that the
fartherthe threepointsareapartthe lesslight x will receive. The re�ection is
alsodependenton theorientationof thesurfaceson which thepointsarelocated.
F.ex., if thesurfacenormalat x0 is pointingtowardsx00, x0 will receivemorelight
thanif it hada differentorientation. Re�ection is alsohighly dependenton the
wavelengthof theincominglight. All thesefactorscanbecombinedinto asingle
function: theBRDFor BidirectionalRe�ectanceDistributionFunction1. We can

1BRDF is alsocalledspectral re�ectivity coef�cient. It was introducedby Nicodemuset al.
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describethelight passingfrom x0 to x asaresultof light passingfrom x00to x0as:

L x00(x; x0) = L(x0; x00)BRDF (x; x0; x00) (2.1)

Noticethatthewavelengthof thelight is notmentionedexplicitly. Thisomis-
sion is madeon purposebecausetherelationis thenindependentof how we rep-
resentcolors. For the usualRGB representationof colors all the elementsare
3-vectorsandthemultiplicationoperationis per-componentmultiplicationasde-
scribedabove.

Light is actuallyastreamof photons,andsinceaparticlecanonly bere�ected
in onedirection,the BRDF actuallydescribesthe chanceof re�ecting a photon
in a certaindirectionor thepercentage of all incomingphotonsthatarere�ected
in thatdirection.This is not animportantdistinctionaswedo not modelphotons
directly.

A differentformulationof theBRDF is possible.Insteadof using3 pointswe
cande�ne a BRDF function which takesasinput a singlepoint, a directionfor
theincominglight andare�ection direction2. Underthedirectionformulationthe
local light modelwould look like this:

L~! i (x; ~! o) = L i (x; ~! i )BRDF (x; ~! i ; ~! o) (2.2)

Where~! i is thedirectionof theincominglight, and~! o is theoutgoingdirection
of there�ected light. It is sometimesmoreconvenientto usethis formulationof
theBRDFbut thebasicideais thesame.

A visualizationof a BRDF for a single incomingdirection is seenin �gure
2.2. The distanceof the curve from x0 representsthe amountof re�ection. The
fartheraway thecurve is, themorelight is re�ectedin thatdirection.

n

'

''

X

X

Figure2.2: Visualizationof aBRDFfor asingleincomingdirection.

in 1977[NRH+ 77]. Notethat in themannerwe presentit hereit is actuallytheunoccludedthree
point transportre�ectanceasdescribedin [Kaj86].

2This is theoriginal formulationof theBRDF.
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TheBRDFis averygeneraldescriptionof re�ection, andin real-timeapplica-
tionsa generalBRDF is oftentoo expensive to evaluateso insteada simplerand
cheapermodelis oftenused.We will elaborateon this in section2.2.

2.1.2 Global models

Global light modelstake into accountthe entirevirtual world. This meansthat
every object in the entire scenecan potentially in�uence the color of a point.
Examplesof suchin�uencesareobjectsblockingdirect light from a light source
to thepointor objectsre�ecting additionallight ontothepoint. Theresultof using
a globallight modelis oftencalledglobal illumination.

The 'standard'model is the rendering equation introducedby Kajiya in
1986[Kaj86]. Kajiya says:

“[The model] subsumesa wide variety of renderingalgorithmsand
providesa uni�ed context for viewing themasmore or lessaccurate
approximationsto thesolutionof a singleequation.”

Therenderingequationis:

L(x; x0) = v(x; x0)
�

Le(x; x0) +
Z

S
BRDF (x; x0; x00)L(x0; x00)dx00

�

(2.3)

The functionv encodesvisibility. v is 1 if x andx0 aremutuallyvisible and
0 otherwise.L e is the light passingfrom x0 to x becauseof theemissionof light
at x0. Unlessx0 is a light sourcethis factorwill be zero. S is the union of all
surfacesof all objectsin theentirescene.Therenderingequationthereforestates
that the light passingfrom x0 to x is zero if they arenot visible to eachother;
otherwisethey are the sumof the emittedand the re�ected light from x0. The
emittedlight is a propertyof theobject,which x0 is a partof, andthegeometric
relationshipbetweenx andx0. There�ectedlight from asinglesourcepoint,or a
singleincomingdirection,hasalreadybeendescribedin equation2.1,sothetotal
amountof re�ectedlight mustbethesum(integral)of thecontributionfrom every
point in thescene.

The renderingequationcannotbe directly evaluatedsinceL occurson both
sidesof theequation.Howeverwe canreformulateit asKajiya[Kaj86] does.We
startby writing it in acompactform:

L = vLe + vTL (2.4)

where

< Tf > (x; x0) =
Z

S
BRDF (x; x0; x00)f (x0; x00)dx00

10



By evaluatingequation2.4recursively weget:

L = vLe + vTL

= vLe + vT(vLe + vTL)

= vLe + vT(vLe + vT(vLe + vTL))

= vLe + v(Tv)Le + v(Tv)2Le + v(Tv)2TL

=
1X

n=0

v(Tv)nLe (2.5)

An intuitive interpretationof this is that the light from a point is the sumof
light re�ected0,1,2,3,.. . timesfrom thepoint. This allows a reformulationof the
distinctionbetweenlocal andglobal models. Local modelsonly calculatelight
which is re�ected zeroandonetimes,i.e. light emittedfrom thepoint andlight
received directly from a light source,anddisregardvisibility for the re�ections.
Globalmodelscalculatelight re�ectedanynumberof times,usinga local model
whencalculatingasinglere�ection.

2.2 Lighting in real-timecomputer graphics

The mostgeneralway of representinga BRDF is to sampleit for a numberof
incoming and outgoingdirectionsand then usethe samplesas a lookup table,
interpolatingthevalues.SincemostBRDFsarenotsmoothquitea lot of samples
of this six-dimensionalfunction3 is required. In real-timeapplications,this is
often too expensive. To develop a simplermodelwe will look at specialtypes
of BRDFsthat are interestingfrom a performancepoint of view. The standard
lighting modelfor real-timeapplicationsis a resultof attemptsto modelspecial
typesof BRDFsandthe multiple re�ections of light describedby the rendering
equation.

2.2.1 Diffuse BRDFs

A perfectlydiffuse4 surfacere�ects incominglight equallyin all directions.Ex-
amplesof this aredull, matmaterialssuchaschalkor soot. TheBRDF for such
surfacesis constantunderachangeof outgoingdirection(adirectconsequenceof
re�ecting equallyin all directions).A changein the incomingdirectionwill still

3A BRDF in the directionformulationis six dimensional:two valuesfor the coordinatesof
point on a surfaceandtwo valuesfor eachdirectionsincea directioncanberepresentedin spher-
ical coordinates.

4Also known asa Lambertiansurface.
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changetheBRDF sincethelight receivedby x0 dependson theorientationof the
surfacewhich x0 is a partof. In �gure 2.3we seea beamof light with unit width
hitting a surfaceat anangle� . Theareacoveredby thebeamis equalto 1=cos� .
We canthereforeseethatlight hitting x0 shouldbescaledby cos� , where� is the
anglebetweenthesurfacenormal~n andthedirectiontowardsthesourcepoint. If
wecall thatdirection~! i , asin thedirectionformulationof theBRDF, andassume
thatboth~n and~! i arenormalized,thencos� canbecalculatedas~! i � ~n (thedot
productof ~! i and~n).

Figure2.3: An incomingbeamcoversanareaof 1=cos� .

This cosfactoris fundamentalin thesensethatall physicallycorrectBRDFs
must include this. Exceptfor the cos factor the BRDF for a perfectly diffuse
surfaceis constant.

2.2.2 SpecularBRDFs

Anotherspecialcaseof BRDFsis theperfectlyspecularsurface.Heretheincom-
ing light is alwaysre�ectedexactlyin themirror direction5. Examplesof perfectly
specularsurfacesincludemirrorsandstill watersurfaces.If we disregardthecos
factoron the incomingdirection,a BRDF for a perfectlyspecularsurfacein the
directionformulationis:

BRDF (x; ~! i ; ~! o) =

(
� if ~! o = mirror(~! i )
0 otherwise

)

Where� is a constantwhich tells how muchof the light is re�ected versus
absorbed.Sincefew materialsareperfect,light is oftenre�ected in a smallcone
aroundthemirrordirection.A surface,whichis mostlyspecular, butnotperfect,is
calledglossy. In �gure 2.4weseeavisualizationof aperfectlydiffuse,aperfectly
specularandaglossyBRDF.

5The mirror direction is wherethe incomingangleequalsthe outgoingangle,andit canbe
calculatedas:mirror(~! ) = 2(~! � ~n)~n � ~! .
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Figure2.4: Specialcasesof BRDFs.

2.2.3 Ambient light

If we look at the renderingequationaswritten in equation2.5 it is the sumof
light re�ected 0,1,2,3,.. . times. The local modelwe areaboutto describemakes
a fair approximationof the 0th and1st re�ection but disregardsthe rest. These
missingre�ections would give a subtleillumination in a realenvironment,even
on surfacesthatarenot directly illuminatedby any light sources.This is because
it is usuallypossibleto �nd apathwhich,whenre�ectedenoughtimes,eventually
reachesa light sourcefrom any onepoint.

A verycrudebut cheapapproximationto this is to introduceanambientterm.
Theglobalambientlight is de�ned asa constantamountof light that illuminates
all objectsin the scene.Furthermore,light sourcesemit ambientlight which is
received by objectsindependentof their orientation. Dif ferentobjectscanstill
re�ect this light differentlyhoweverandtheambienttermfor a point is therefore
theambientlight multipliedby anambientre�ection coef�cient for thepoint.

2.2.4 The standard lighting model for real-timeapplications

Thethreedifferenttermsintroducedabovecanbecombinedto form a local light
model,which is usedby allmosteveryreal-timeapplication6. It canbewrittenas:

6Weshallnotdescribeall thedetailsof thestandardlight model.For amorethoroughdescrip-
tion seef.ex. [WND+ 99] pp. 211- 215or [FvDFH91] section16.1.
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L(x) = xemission

+ globalambient � xambient

+
NX

i =0

L i
attenuation �

0

B
@

L i
ambient � xambient +

L i
dif f use � xdif f use � (~n � ~! i )+

L i
specular � xspecular � (~n � (~! i + ~! o))xshininess )

1

C
A

Wherexp meanspropertyp of thepointx, andL i
p is propertyp of thei th light

source.
The equationstatesthat the color of a point x is the sum of the emission,

global ambientand the ambient,diffuse and specularcontribution from all N
light sourcesin thescene.Thecontribution from eachlight sourceis dependent
on thedistancebetweenthelight sourceandthepoint. This attenuationis called
L i

attenuation in theequationandis de�ned as:

L i
attenuation = min

 

1;
1

L i
c + L i

l d + L i
qd2

!

Whered is thedistancebetweenx andthei th light source.L i
c, L i

l andL i
q are

theconstant, linear andquadratic attenuationparameters respectively. They can
be adjustedindividually for eachlight to achieve a certainattenuationbehavior.
Thetotal attenuationfactoris clampedto therange[0::1] aslight cannotbenega-
tive,andconsideringthat theattenuationshouldnever make a light strongerthan
its originalpower.

Theambientcontributionfrom alight sourceis only dependentonthedistance
to thelight source,whereasthediffusecontribution is scaledby thecosfactoras
describedabove. The specularcontribution from a light usesa modelproposed
by PhongBui-Tong[BT5x]. It modelsglossysurfacesby assumingthat the light
specularlyre�ectedis dependenton theanglebetweentheoutgoingdirectionand
the mirror direction,anda materialdependentshininessfactor(xshininess ). The
dot productbetweenthenormalvectorandthemirror vector, which arenormal-
ized beforeuse,returnsa numberin [0::1]. Raisingthis numberto thepower of
theshininessfactor, which is typically between1 and256,givesa functionwhich
is 1 whenthe angleto the the mirror directionis 0 andfalls of quickly with in-
creasingangle. In early implementationsthe true mirror directionwasnot used
for ef�ciency reasons,insteadthehalfwayvector, calculatedas~! i + ~! o, wasused.
Currentimplementationscaneasilyafford to calculatethe true mirror direction
andusethatasinput to thePhongmodel.

Thestandardlighting modelis a highly empiricalmodel. It usesapproxima-
tions which work well in many cases,but it hasno groundingin any theoretical
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modelof light interaction.Phong'smodelfor specularre�ection is aexactlysuch
an imperial model. Furthermore,the calculationsfor the ambient,diffuse and
specularcontributionsaretotally separate.This allows light sourcesto emit red
'specular'light andgreen'diffuse' light for example.Thiswouldn't bephysically
correct,but it givesa lot of artisticfreedomto achieveacertainlook.

The reasonfor the popularity of the standardlighting model is probablya
combinationof four things: it is relatively cheapto compute,it is conceptually
simple,it modelsmany of themostimportantaspectsof light/objectinteraction,
and it allows a greatdegreeof artistic freedom. The two most usedreal-time
APIs,OpenGLandDirectX, implementthestandardmodelin their �x edfunction
pipeline, and previously applicationswere forced to usethe standardmodel if
they wantedto take advantageof hardwareacceleration.This haschangedwith
theintroductionof theprogrammablepipelinewhichallowsyouto implementany
modelyou desire.

2.2.5 Vertex vs. pixel basedlighting

Thestandardlighting model,describedabove, canbeevaluatedper fragmenton
currenthardware. Previously this wastoo computationallyexpensive anda dif-
ferentapproachwasused.Thelight modelwasonly evaluatedpervertex andthe
resultingcolor wastheninterpolatedacrossthe triangle. This is calledGoraud
Shading, (see[FvDFH91] section16.2.4). The two approachesare alsocalled
per-vertex lighting andper-pixel lighting. Per-vertex lighting is of coursecompu-
tationallycheaperbut it hasseveralvisiblede�ciencies,wherethemostimportant
onesstemfrom the fact that the interpolationcannotproducehighervaluesthan
the valuesat the vertices. Thereforea fragmentin the centerof a trianglecan-
not bebrighterthanthe fragmentsat thevertices.Consequentlyareaswherethe
lighting changesrapidly, suchasspecularhighlightsandlight sourcesvery close
to thegeometry, will exhibit visualartifacts,especiallyin animatedscenes.These
problemswill becomelessnoticeableif objectsarehighly tessellated,(usingmore
verticesandtriangles),but asmentionedwith currenthardwareit is possibleto use
per-pixel lighting which of courseproducesthebestresults.

Figure2.5showsa simplescenerenderedwith per-vertex lighting on theleft,
andwith per-pixel lighting ontheright. Theleft sidealsoshowsawire-frameview
of thewall segmentbeingilluminated. As is seen,the two differentapproaches
resultsin very differentimages.With per-vertex lighting the light doesnot seem
to have any effect at all. And indeed,with this setup,the light doesnot affect
theimagesincenoneof theverticesthatmake up thewall segmentfall within its
sphereof in�uence. With per-pixel lighting, an attenuationvaluefor the light is
calculatedateachfragmentandasa result,thewall is correctlylit.
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Figure2.5: Per-vertex andper-pixel lighting.
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Chapter 3

Shadow techniques

An exact solutionto the renderingequationdiscussedin the previous chapteris
not possible. Variousoff-line renderingtechniquessuchas raytracing,photon
mappingandradiositygive approximationsto the renderingequationwherethe
visibility functionsaretakeninto consideration.Thismeansthatthesetechniques
automaticallyproduceimageswhereshadows,sometimesevensoft shadows,are
included.However, theonly feasiblesolutionfor real-timerenderingis currently
rasterization,which in its basicform usesthe local light modeldescribedin sec-
tion 2.2.4. By de�nition, usinga local light modelmeansthat shadows arenot
included,but aswe shall seein this chaptervariousalgorithmsexist thatextend
therasterizationapproachwith a visibility functionfor directillumination.

In this chapterwe �rst give an overview of the most important real-time
shadow algorithms. We then focus on a particulartechniquecalled the stencil
shadow algorithm,which is usedby many real-timeapplicationstoday. Several
optimizations,improvementsandversionsof thestencilshadow algorithmarede-
scribedasis how they canbeviewedasapproximationsto therenderingequation.

3.1 Overview of shadow algorithms

For real-timeapplicationsshadow algorithmscanbe split into threegroupsthat
wehavenamedlimited, staticandgeneral.

Limited algorithmsoperatein environmentswith veryrestrictiveassumptions.
An exampleof thisis theprojectiveshadow algorithm[Bli88], whichassumesthat
theobjectreceiving shadow is a planewith a known orientationandpositionand
thatno objectsarepositionedbetweentheshadow casterandtheplane.Limited
algorithmsserve a purposein speci�c environments,e.g. a CAD system,but are
not widely usedtoday.

Staticapproachesarecharacterizedby theirassumptionsthatobjectsandlights
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arestationaryandit is thereforepossibletoprecalculateshadow andlight informa-
tion. An exampleof astaticalgorithmis lightmaps,(see[AMH02] section5.7.2),
which precalculateslight, andthusshadow, informationto textures. Objectsare
thenrenderedwith this additionaltexturemodulatedon top of their usualtexture
map.Sincetheprecalculationcanbeaglobalillumination calculation,verygood
imagequality canbeachieved. Furthermore,astherenderingof anextra texture
is somethingthat all moderngraphiccardsexcel at, the algorithm is very fast.
Yet thealgorithmalsohasits drawbacks,suchasthestaticnatureof thetextures,
which preventsnon-stationaryobjectsfrom castingshadows. Furthermore,the
storagespacerequiredfor the lightmappingalgorithmcanbefairly largesincea
lightmapmustbe storedfor eachtriangle in the scene. Despiteall of this, the
lightmapalgorithmis heavily usedin many real-timeapplications,oftento good
effect.

Generalalgorithmstry to calculateshadows in a generalenvironmentwhere
very little canbeassumedaboutthenatureof theshadow castersor theshadow
receivers,andwhereall objectsandlights canmovefreelyaroundthescene.

This division of shadow algorithmsinto threegroupsis quitecrude,anda lot
of researchhasbeenconductedto createalgorithmsthatcrosstheseboundariesto
reacha goodcompromisebetweentheadvantagesanddrawbacksof eachgroup.
See[AMH02] section6.12 for an overview of real-timeshadow algorithms. In
recentyears,researchhasfocusedon generelalgorithmsbecausedevelopments
in hardwarehave renderedthe limited andstaticalgorithmsrelatively simpleto
execute.Our focusfor theremainderof this thesiswill beon generalalgorithms
only.

Thetwo mostsuccessfulgeneralalgorithmsarestencilshadowsandshadow
maps. Stencilshadows will be explainedin detail below. The basicobservation
with regardto shadow maps[Wil78] is thatbetweentheview-spaceof theobserver
andtheview-spaceof a light sourcethereexistsa linearmapping(expressibleby
a 4x4 matrix andthereforecheapto calculate).Thealgorithmhastwo passes:In
the�rst passthesceneis renderedinto thelight'sview-spaceandthedepthinfor-
mation,(i.e. how farawayevery fragmentis from thelight), is storedin ashadow
map. In the secondpassthe sceneis renderednormally and it is now possible
to determinewhethera fragmentcan 'see' the light source. This is determined
by transformingthefragmentspositioninto thelights view-spaceandcomparing
its depthto thestoreddepthvaluein theshadow map. If the fragmentis farther
away thanthestoreddepthvalueanotherobjectmustbeblocking thepathfrom
thefragmentto thelight source,andit is thereforein shadow.

Theshadow mapalgorithmwas�rst proposedby Williams in 1978[Wil78],
andperhapsthe mostimportantadditionto it hasbeenthe paperby Segal et al.
[SKv+ 92], in which they notedthattherequiredcomputationsareverysimilar to
the onesrequiredfor perspective correcttexture mappingandthereforealready
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implementedin hardware.See[ERCwn] for a detaileddescriptionof how this is
accomplished.Sinceshadow mapscanbe hardware-acceleratedit is quite fast,
andit is usedin many real-timeapplicationstoday. Its mostimportantadvantage
is its versatility: it cancastshadowsfrom andontoeverythingthatcanberendered
by theapplication,theonly exceptionbeingobjectswith semi-transparentareas1.
It hasonemajor drawbackhowever: the discretizationandlimited precisionof
the shadow mapcanresult in very visible artifacts,for examplein the form of
jaggedshadow edges.Eventhoughmany improvementshasbeensuggestedthe
pixel preciseshadows,seenin for examplethestencilshadow algorithm,havenot
yet beenachieved.

3.2 Stencil shadows

Crow presentedthe stencil shadow algorithm in 1977 [Cro77] underthe name
projectedshadowpolygons. In 1991Heidmannsuggested[Hei91] to usethesten-
cil buffer to implementCrow's original algorithmwhich gave the algorithmthe
nameby which it is bestknown today. Stencilshadows belongsto thegroupof
volumetricshadowalgorithmsastheshadowedvolumein thesceneis explicit in
thealgorithm.

Thebasicideain thealgorithmis to generate,for eachobjectandlight pair,
thevolumewhich is in shadow from the light. Whenshadinga fragmentit must
thenbe determinedif it is insideany of thesevolumes.This ideais depictedin
�gure 3.1. The shadow volumesare the gray areaswherethe two spherescast
shadow. The volumesshouldideally extend to in�nity , but it is suf�cient that
they extendto the far sideof the geometry. We will elaborateon the extension
of the volumeslater. Whenshadinga pixel we tracea line from the eye to the
fragmentandcount the numberof entriesinto shadow andthe numberof exits
out of shadow. If thenumberof entriesaregreaterthanthenumberof exits the
point mustbe in shadow, otherwiseit is lit by the light2. Take f.ex. thepoint p1.
This point is in shadow sincethenumberof shadow volumeentries(1) is greater
thanthe numberof exits (0). Point p2 on the otherhandis not in shadow since
the numberof entriesandexits areboth 1. Note how this approachalsoworks
acrossmultiple shadow volumeswheretheray passesall theway throughoneor
moreshadow volumesbeforereachingthepixel. Pointp3 is correctlyclassi�edas
beingin shadow sincethenumberof entries(2) is greaterthanthenumberof exits
(1). Thisapproachassumesthattheview point is outsideany shadow volume.An

1Transparentareasin a texturearehandledcorrectlyif they are100%transparent.
2Othermethodsfor determiningwhethera pixel is insidea volumeor not arepossiblebut the

line-tracealgorithmis closeto theonesuggestedby [Cro77] andlendsitself nicely to hardware
acceleration.
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improvementthatremovesthis restrictionwill bedescribedin section3.3.

Figure3.1: Stencilshadows: Raysfrom eye to pixel

As weareonly interestedin a fragment'scolor if it is visible,(i.e. notcovered
by fragmentscloserto theeye),wecanthink of thelinesfrom theeye to thefrag-
mentsasview raysbeginning at the eye, going throughthe centerof a pixel on
thescreen,andhitting the�rst visible fragmentin thescene.Theview rayscount
thenumberof entriesandexits andwecanthereforedeterminewhethertheray is
in shadow or not whenhitting thefragment.By emittingview raysfrom theeye
throughall pixelson thescreenwe would thenhave theshadow informationfor
the �nal image.Fortunately, it is not necessaryto do actualray tracingto imple-
mentthis, but that is theconceptualideaof thealgorithm. Beforewe describea
differentimplementation,we �rst examinehow to modeltheshadow volume.

3.2.1 The shadow volume

Thestencilshadow algorithmassumesthatshadow castersconsistof anopaque
trianglemeshandthatlight sourcesaremodeledaspoints,(i.e. havezeroradius).
A shadowmeshcanthe be build consistingof ordinary, but invisible, geometry
which modelstheactualshadow volume.For a singletriangleit wouldconsistof
threequads3, eachextendingfrom a triangleedgeto in�nity , away from thelight.
Moreprecisely, theline wheretwo quadsmeetextendsthroughthecorresponding

3Quadrangleis usuallyshortenedto quad.
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vertex in theexactoppositedirectionof thevertex to light direction.Figure3.2is
anillustrationof this.

Figure3.2: Shadow volumefor asingletriangle.

For a generalmeshit is not necessaryto createquadsfrom all edges.Con-
sider two trianglessharingan edge. If both trianglesfacethe light thena quad
extendingfrom the sharededgewould be unnecessarysinceit would represent
neitheran entry nor an exit from the shadow volume. At �rst glanceit would
appearthat theedgeswhich oughtto generatetheshadow meshshouldbe those
on the silhouette4 of the mesh,(asseenfrom the light). However, thereareat
leastthreereasonswhy this is not a goodapproach.Firstly, the silhouetteis, in
general,acollectionof partsof edgesandthiswouldcomplicatethegenerationof
theshadow mesh.Secondly, if weonly createquadsfrom thesilhouettewewould
not calculatecorrectself-shadowing5 in all cases.Finally thecomputationof the
silhouetteis quiteexpensive. We thereforeusea simplerapproachandgenerate
theshadow meshfrom thecontouredges.Thesearetheedgeswhich have either
only one front-facing neighboringtriangle, or wheretwo neighboringtriangles
have differentorientationstowardthelight, (i.e. whereoneis facingtowardsand
theotherawayfrom thelight). To calculatethecontouredgeswestartby creating
a list of all edgesanda datastructurethroughwhich we can�nd theneighboring
trianglesfor a given edgein constanttime. This is a precalculationstepwhose
resultremainsvalid aslong astheconnectivity of themeshdoesnot change,(the
verticescan changeposition without affecting connectivity, so it is possibleto
have animatedmeshes).To calculatea shadow meshwe thenmake a singlepass
throughall edgesandcalculatewhetherthey areacontouredgeor not. Giventhe
previousde�nition anddatastructureweseethatthiscanbedonein constanttime

4Thesilhouetteis theouteredgeof anobjectasseenfrom aparticularpoint
5Self-shadowing occurswhen a part of an object castshadow on anotherpart of the same

object.
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for asingleedge.Thecalculationis thereforelinearin thenumberof edgesin the
mesh.

Notethatfor thealgorithmto work it is notnecessaryfor theshadow meshto
beclosedat thetop or bottom.It would seemthatview rayscouldthenenterand
exit thevolumewithoutcountingentriesandexitscorrectly, but thisis notthecase.
A view ray cannever passthroughthemissingbottomof theshadow meshsince
thebottomis atin�nity andthefragmentis thereforecloser. It cannotpassthrough
themissingtopeitherbecausewehaveassumedthattheshadow generatingmesh
is opaque. The fragmentwill thereforebe on the shadow generatingmesh,or
possiblyin front of it, stoppingtheraybeforeit enterstheshadow volume.

3.2.2 Using the stencil buffer

Emitting view rays and tracing them through the world would suggesta ray-
tracingimplementationbut, asHeidmannsuggestedin 1991[Hei91], givenboth
a stencilandz-buffer it is possibleto usea rasterizationapproach.

Sincewe arenot interestedin the actualnumberof shadow entriesandexits
only whetherthe �rst is greaterthan the latter, we introducethe shadowvalue
which is thedifferencebetweenthe two. A shadow valuegreaterthanzerothen
meansthatafragmentis in shadow. Thebasicideain thestencilshadow algorithm
is to let theshadow valuebe storedin thestencilbuffer andupdateits valuefor
all pixelscoveredby ashadow meshtriangle,insteadof calculatingit for asingle
pixel beforemoving on to thenext. Thez-buffer is usedto determinewhetherthe
fragmenton theshadow meshtriangleis in front of or behindthecorresponding
fragmenton thegeometry.

Figures3.3,3.4and3.5show how thestencilvaluesareupdated.In the�gures
we see,in a 2d 'sideview', somegeometry, a shadow caster, a light sourceand
a view point. Thestencilbuffer is visualizedon thefar left. To make the�gures
simplerwe have useda parallelprojectionontothestencilbuffer, andthestencil
valuefor a fragmentcanthereforebe found by moving horizontally to the left.
In �gure 3.3 we seethe initial setupwherethe stencilbuffer is clearedto zero.
In �gure 3.4 we seethe effect on the stencilbuffer after the �rst shadow mesh
triangle, (the fat line), hasbeenrendered.This triangle is front facing and all
valuesbetweenthe lines l0 and l1 have thereforebeenincrementedto oneasa
front facingshadow meshtrianglerepresentsanentryinto shadow. Valuesbelow
l1 havenotbeenaffectedasthegeometrywasin front of theshadow meshtriangle
andconsequentlythez-buffer testhasculledaway thosefragments.In �gure 3.5
thesecondshadow meshtrianglehasbeenrendered.This triangleis backfacing
andwill thereforedecrementthe stencil valuessinceit representsan exit from
shadow. This hasbeendonebetweenthe lines l2 andl3. Again, valuesbelow l3

hasnot beenaffectedbecauseof the z-buffer test. We endup with the stencil-

22



Figure3.3: Stencilvalues:beforerenderingshadow triangles.

Figure3.4: Stencilvalues:afterrenderingoneshadow triangle.
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Figure3.5: Stencilvalues:afterrenderingtwo shadow triangles.

buffer containingthevalueonein theareabetweenthelinesl3 andl1, andthepart
of thegeometrythatis in shadow correspondsto thisareaexactly.

Thealgorithmthatusesthis basicideais a multi-passalgorithm. In the �rst
passit rendersthesceneonceto �ll thez-buffer. In thesecondpassit rendersthe
shadow meshesto �ll the stencil-buffer, asdescribedabove. In the �nal passit
rendersthe sceneonceagainto addthe light contribution from the light source.
However in this passthe stencil test is usedto cull away fragmentswherethe
stencilvalueis lessthanor equalto zero.Thispreventstherenderingfrom taking
placein theshadowedareas.A moredetaileddescriptionis:

1. Clearcolor-buffer, z-buffer andstencil-buffer.

2. Renderthescenewith only ambientandemissive lighting.

3. Disablewriting to color-buffer andz-buffer, enablestencil-buffer.

4. Renderall front facing shadow meshtriangles, incrementingthe stencil
valuewhenpassingthez-test.

5. Renderall back facing shadow meshtriangles,decrementingthe stencil
valuewhenpassingthez-test.

6. Re-enablewriting to color-buffer, setz-buffer testto equal,setstenciltest
to passwhenvalueis lessthan0 anduseadditiveblending.
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7. Renderthescenewith only diffuseandspecularlighting.

Step2 ensuresthat all fragments,including thosein shadow, have both am-
bientandemissive lighting andserve to �ll the z-buffer. Step3 ensuresthat the
shadow meshrenderednext doesnotaffect thecolor-buffer, (directlyat least),and
thatwe canusethevaluesin thez-buffer without overwriting them. Steps4 and
5 aretheessentialonesthatperformthecountingof entriesandexits asdescribed
above. Step6 setsthe z-buffer test to equal,ensuringthat only the exact same
fragments,that werevisible in the �rst pass,arerendered.Step6 alsoenables
additiveblending,meaningthatthecalculatedcolorwill beaddedto theprevious
contentof thecolor-buffer, andsetsup thestenciltestsothatonly thepixels,(or
rathertheir correspondingfragments),whichareoutsideshadow will berendered
again.

Oneway to renderonly front facingor backfacingtrianglesis to usetheCPU
to classify the trianglesinto thesetwo categoriesandthenonly renderthe cor-
rectsubsetof themesh.Anotherway is to usetheGPU's capabalityof rejecting
trianglesbasedon theordertheverticesappearin whenprojectedto thescreen.
If the trianglesof a mesharegeneratedwith a consistentordering,eitherclock-
wiseor counterclockwise,theprojectedorderof theirverticesdetermineswhether
they arefront or backfacing. Trianglesareusuallygeneratedusinga clockwise
orderingof their vertices. Renderingonly front facingtrianglescanthenbe ac-
complishedby letting the GPU cull away all counterclockwisetriangles. The
entireshadow meshcanthenbe renderedin steps4 and5, andwhile this may
seemwastefulat �rst, it allows the hardwareto performtheorientationcalcula-
tion andminimizesstatechangesaswell astheamountof datasentto theGPU.
More importantly, it allows theuseof twosidedstencilasdescribedbelow.

Sofarwehaveassumedthatthereis only onelight-sourcein thescene,which
is rarelysatisfactory. Fortunatelyit is easyto generalizethealgorithmto handle
multiple light-sources.Thestepsinvolvedare:

1. Clearcolor-buffer andz-buffer.

2. Renderthescenewith only ambientandemissive lighting.

3. For all lights l:

(a) Clearstencil-buffer, disablewriting to color-buffer andz-buffer, set
z-buffer testto less-than.

(b) Renderall front facing shadow meshtrianglesgeneratedby l, incre-
mentingthestencilvaluewhenpassingthez-test.

(c) Renderall back facing shadow meshtrianglesgeneratedby l, decre-
mentingthestencilvaluewhenpassingthez-test.
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(d) Re-enablewriting to color-buffer, setz-buffer testto equal,setstencil
testto passwhenvalueis 0 andenableadditiveblending.

(e) Renderthescenewith only diffuseandspecularlighting from l.

This is a simpleextensionof the algorithmon page24. After the �rst pass,
which �ll the z-buffer, we loop over all lights in thescene.Sincetheshadowed
areasfor onelight is completelyindependentfrom thoseof otherlights we must
clear the stencil buffer beforeeachlight pass,which then proceedsexactly as
previouslyde�ned. Theadditiveblendingensuresthatweendupwith thesumof
thelight contributionsfrom eachlight plustheambientandemissive light.

3.3 Impr oving stencil shadows

The stencilshadow algorithm,asdescribedabove, is easyto implementandby
usingthestencilbuffer it canbehardware-acceleratedandis thereforequitefast.
Unfortunatelyit hasaveryseriousdrawback,whichlimited its usein applications
for years:it doesnotwork whentheeyepoint is inside,or verycloseto, ashadow
volumesincethevolumewill becut openby thenearclip plane,resultingin the
view raysmissingashadow-volumeentry. Wewill now describehow toovercome
thisproblemalongwith someoptimizationsfor thealgorithm.

3.3.1 Carmacks reverse

In 2000Carmacksuggested[Car00] aslightlydifferentapproachwhichentailsthat
theview raysaretracedfrom in�nity towardstheeye,stoppingwhenencountering
the pixel on the geometrythat is closestto the eye. This reversalof the view
rays' direction hasgiven the algorithm the nameCarmacks reverse. The two
differentapproacheshavealsobeennamedzpassandzfail, asthestencilbuffer in
theoriginal algorithmis changedonly whena fragmentpassesthez-test.As we
will show below, Carmacksreversecanbe implementedby changingthestencil
valuesonly whenthez-testfails for the fragment,i.e. by usingthez-fail stencil
operation.

Whenusingzfail the shadow meshmustbe closedin both top andbottom.
Figure3.6shows two caseswherethelackof a topandbottomin ashadow mesh
would resultin incorrectshadow countfor theshown pixels. In theleftmostpart
weseeanexamplewherethereversedview rayenterstheshadow volumethrough
themissingbottomandthereforefails to countashadow entry. Thefragmentwill
thereforebeshadedasif it wasaffectedby the light, eventhoughit is clearly in
shadow. In therightmostpartof the�gure, we seethereversedview ray entering
the shadow volumethroughthe sidesandthereforecountingan entry correctly.
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Theray thenproceedsthroughtheshadow castingobject,which is exactly where
the top of the shadow meshought to be and the ray thereforefails to countan
exit. Theshadow-castingobjectwill thereforealwaysappearto bein shadow and
eventheareasof theobjectfacingthelight will beshadowed,which is obviously
wrong.

Figure3.6: Lackof topandbottomin theshadow mesh

Generatingtherequiredtop andbottom'cap' for a generalmeshcanbecom-
plicated,but assuminga closed6 meshit is muchsimpler. For a closedmeshwe
canusethefront facingtriangles,asseenfrom thelight, asthetop cap.Thebot-
tom capcanthenbegeneratedfrom thebackfacingtrianglesby extruding them
awayfrom thelight, asdescribedin section3.2.1.Sincethemeshis assumedto be
closed,all edgeshave exactly two trianglesconnectedto it. Thesilhouetteedges
arethereforethosewhosetriangleshavedifferentfacingswith regardto thelight.
From the above we know that the backfacingtrianglehasbeenextrudedaway
from the front facingone,tearingopenthemesh.To closetheshadow meshwe
inserta quadat every silhouetteedgeconnectingthe top, which is in its original
position,andthebottom,which is now at in�nity .

Giventheclosedshadow mesh,wecanimplementthezfail algorithmby using
thestepsdescribedon page24 with a few changes.Whenrenderingfront facing
triangleswedecrementthestencilvaluewhenafragmentfails thez-test,andwhen
renderingbackfacingtriangleswe incrementthestencilvaluewhenthefragment
fails thez-test.This implementsthetracingof a line from in�nity towardstheeye
sinceall shadow meshtrianglesbehindthevisiblegeometrynow affect thestencil
values,andsincethosetrianglesthatarebackfacingto theview positionarenow
front facingto theview ray.

Assigninga vertex a positionat in�nity is not a problem,we simply useho-
mogenouscoordinatesandsetthew componentof thevertex to zero. However,

6What we actuallyneed,is thateachedgein themeshis connectedto exactly two triangles,
but this is thesameashaving the intuitive propertyof beingclosed:Thereis an 'inside' andan
'outside' of the objectand we cannotmove betweenthemwithout passingthroughoneof the
triangles.
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with a regular projectionmatrix thoseverticeswould be clippedby the far clip
planeandin this caseit would meanthat thebottomof theclosedshadow mesh
would beclippedaway, resultingin thereversedview ray missinga shadow vol-
umeentry. Thereareat leastthreewaysto correctthis problem. As Everitt and
Kilgaardsuggest[EK02], it is possibleto createa projectionmatrix which places
thefar planeat in�nity , meaningthat it will never clip any triangles.In thesame
paperthey suggestthe useof depthclamping7 which achieves the samething
without usingaspecialprojectionmatrix.

The third solution to the problemis to usean extrusion distancelessthan
in�nity . The extrusiondistanceis the distancethe verticesof the bottomcapof
the shadow meshare extrudedaway from the light. We can usean extrusion
distancewhich placesthebottomof theshadow meshsofar away from the light
that thecontribution from the light behindthebottomis zeroor negligible. This
makessensefor attenuatedlight sourceswhoselight contribution decreasewith
increasingdistance.Directionallights on theotherhand,which areconceptually
locatedatin�nity , areof coursenotattenuatedandasaresult,it is hardtocalculate
an extrusiondistancethat is guaranteedto be big enough. Even for attenuated
point lights it is easyto constructcaseswhereany �nite extrusiondistanceis too
short.

In �gure 3.7weseealight source,ashadow castingobjectandthecorrespond-
ing shadow mesh.Thesphereof in�uence is thedistancebeyondwhich thelight
doesnotaffect theshadingof a fragment.Theextrusiondistancehasbeenchosen
sotheverticesareoutsidethesphereof in�uence but theshadow meshstill leaves
anon-shadowedregion,which is lit by thelight althoughit shouldnotbe.Choos-
ing any �nite, (and�x ed),extrusiondistanceweseethatit is possibleto movethe
light socloseto theshadow castingobjectthatwe still have a non-shadowedre-
gion. Of courseit is possibleto calculatetherequiredextrusiondistancefor each
case,but this requiresthatwe,ateachvertex, have informationaboutall triangles
which thevertex is partof. Thiscomplicatesanotherwiseverysimplealgorithm,
andmoreimportantly, this informationis not availablein a vertex shader. This
implies,thatvertex shadershadow volumes,aswill bedescribedin section3.3.3,
cannotbeused.

By choosinga large extrusiondistanceit is alsopossibleto make a shadow
meshbig enoughto beclippedby thefarplane.Thiswould thenrequireusto use
eithera farplaneat in�nity or thedepthclampapproachanyway. The�nite extru-
siondistancesolutionis thereforenotwithoutproblemsbut thereis oneaspectthat
makesit interesting:performance.Makingtheshadow volumesmallermeansthat
its projectedscreensizewill alsobesmallerwhich reducesthenumberof stencil
operations.This canhave a signi�cant impacton performance.Furthermore,the

7Depthclampingis currentlyonly availablein OpenGLusingtheNV_depth_clampextension
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Figure3.7: Shadow meshextrusiondistance.

artifactsintroducedareusuallynotveryobvioussincethenon-shadowedregionis
usuallysmallandin anareawherethelight hasbeenattenuatedsoits contribution
is negligible.

Thechangesto theoriginal algorithmdescribedaboveenablecorrectshadow
calculationwhentheeye is insidea shadow volumeandis actuallya very robust
andpracticalalgorithm. Theextra costincurredby theaddedtop andbottomof
theshadow volumeis well spentin mostapplications.

3.3.2 Two-sidedstencil testing

Anotherchangeto the algorithmis the useof two-sidedstenciltesting8. This is
a new featurein recentGPUsthat allows the applicationprogrammerto setup
and usedifferentstencil statesand operationsfor back facing and front facing
trianglesrespectively. With this functionality it is possibleto exchangesteps4
and5 of thealgorithmon page24 with a singlestepthatrendersall trianglesjust
one time, without any orientationbasedculling. The GPU thendecideswhich
trianglesarefront andbackfacingandusesthecorrectstenciltestsandoperations
accordingto the orientation. This reducesthe CPU load of issuingrendercalls
to thedriver, reducestheamountof verticesthathave to betransformedthrough
a vertex shader, andreducesthe amountof meshdatathat hasto be sentto the
graphicscardover theAGPbus.Thenetresultis asigni�cant performancegain.

3.3.3 Vertex shadercalculation of shadow mesh

With theadditionof programmablevertex shaderfunctionalityanothersigni�cant
changeto thealgorithmis possible.Thecalculationof theshadow meshcanbe
moved from theCPU to the GPU,which of courselifts a burdenfrom theCPU
but, moreimportantly, it alsomeansthattheshadow meshdatacanbesentto the

8First proposedin [EK02]

29



GPU onceinsteadof every frameaswaspreviously necessary9. The idea is to
give theGPUa copy of theshadow castingmesh,but onewhereit is possiblefor
every edgeto stretchandbecomea quadon thesideof theshadow mesh.This is
accomplishedby insertinga quadof zerowidth betweenevery edgeof themesh.
Figure3.8showsfour trianglesandhow theedgesbetweenthemarereplacedwith
quads.Theleftmostpictureshows theoriginal triangles.In themiddlepictureall
edgeshavebeenreplacedwith quads,whichshouldbeof zerowidth but sincethat
representsomevisualizationdif�culties we have shown themstretcheda bit. In
the rightmostpicture,we seethe leftmosttriangleextrudeda bit away from the
others.The quadsborderingthis trianglehave beenstretchedaccordinglywhile
all theothershavezerowidth andarethereforeinvisible.

Figure3.8: Vertex shadershadow mesh.

Sincea vertex shadercalculatestheprojected-spacepositionof a vertex, the
vertex shadercantake all thepointsbelongingto backfacingtriangles,(asseen
from the light), andextrudethemaway from the light. All pointsbelongingto
front facingtrianglesareprojectedto their usualpositions.To determinewhether
a point belongsto a front or back facing triangle the vertex shadermustknow
thefacenormalof thecorrespondingtriangle. This is necessarysincetheshader
cannotaccessthe other points that constitutethe triangle and thereforecannot
calculatethe normal itself. This is not a problemas the facenormal is simply
storedin thevertex datain thesamemanneraswhenusingthenormalto calculate
lighting. For theedgesthatcontainquadswhich arenot stretched,thequadwill
still have zero width and thereforecoversno pixels and contributesnothing to
theshadow calculation.Section6.5shows thevertex shadercodefor extrudinga
mesh.

The only problemwith this approachis that the numberof trianglesin the
shadow meshgrows a lot. We will now analyzeexactly how much.A triangleis
boundedby exactly threeedgesand,sincethemeshis closed,anedgeis incident
to exactly two faces.Thereforea singleedge'generates'two timesonethird of a
face.Assumingt is thenumberof trianglesande thenumberof edgeswehave:

t =
2e
3

( ) e =
3
2

t

9As longasameshis unchangedthegraphicscardcancacheit in AGPmemory, but to change
it theapplicationhasto modify aversionin systemmemoryanduploadit again.
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A VS shadow mesh10 containstwo new trianglesfor eachedgeplustheorig-
inal triangles.Sothenumberof trianglesin theshadow mesht0 is relatedto the
originalnumberof trianglesas:

t0 = t + 2e = t + 2
3
2

t = 4t

Theshadow meshmustalsocontainnew vertices.In fact, theoriginal trian-
glescanno longershareverticessinceit mustbepossiblefor eachof themto be
extrudedseparately. Thequads,however, sharetheverticeswith thetrianglesthey
separate,hencethenumberof verticesin theshadow meshv0 is:

v0 = 3t

The numberof verticesin the original meshcanbe calculatedfrom Euler's
formula,whichstatesthat:

v � e+ t = 2

sowehave that:

v �
3
2

t + t = 2 ( ) v = 2 +
1
2

t ( ) t = 2(v � 2)

andtherefore:

v0 = 3t = 3 � 2(v � 2) = 6v � 12

This meansthat therearefour timesasmany trianglesandaboutsix timesas
many verticesin a VS shadow meshasin theoriginal mesh.Of coursea regular
CPU-calculatedshadow meshalsohasadditionaltriangles,but aVS volumeis the
'worst-casescenario'.However, giventheperformancecharacteristicsof current
GPUswherevertex processingischeapcomparedtosendingdatafromtheCPUto
theGPU,theVS shadow volumesstill performsbetterthanregularCPUvolumes.
The tablebelow shows performancemeasurementsin FPSfor the screen-shots
shown in �gures B.1 to B.411:

Location CPUvolumes VS volumes Difference
B.1 7.5 18.5 146%
B.2 24.0 33.5 39%
B.3 14.0 61.0 335%
B.4 38.0 39.0 3%

10Vertex shadershadow mesh.
11The test was carriedout on a 900MHz AMD Athlon with an ATI Radeon9700 Pro in a

1024x768resolutionwith per-pixel lighting.
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As is seenin the table,the performancedifferencevariesa lot: from almost
nothingto a four timesincrease.This is theresultof thenumberof shadow vol-
umesin thefour scenes.In sceneswith very few shadow volumesthework load
introducedby eithermethodis sosmallthatthedifferencein performanceis mim-
imal. This is thecasein thefourth locationin thetableabove. But in sceneswith
lots of shadow volumes(animatedvolumesin particular)the VS volumeslead
to greatperformancegainsdueto the fact that they neednot be calculatedand
transferredto thegraphicscardevery frame.

3.4 The single-passstencil shadow algorithm

Thestencilshadow algorithmdescribedon page25 is the'correct' versionof the
algorithmin thesensethat it addscontributionsfrom a light sourceto a fragment
only if that fragmentis not in shadow from the light. This implies that thealgo-
rithm mustrenderthesceneonetimefor eachlight-source12. Thereexistsanother
algorithm13 which rendersthesceneonly once.It canbedescribedas:

1. Clearcolor-buffer, z-buffer andstencil-buffer.

2. Renderthescenewith all lights enabled.

3. Disablewriting to color-buffer andz-buffer, enablestencil-buffer.

4. Renderall front facingshadow meshtrianglesfrom all lights, incrementing
thestencilvaluewhenpassingthez-test.

5. Renderall back facingshadow meshtrianglesfrom all lights,decrementing
thestencilvaluewhenpassingthez-test.

6. Re-enablewriting to color-buffer, disablez-buffer test, set stencil test to
passwhenvalueis lessthan0 andsetadditiveblending.

7. Renderadarkfull-screenoverlay.

This algorithm�rst identi�es all thoseareason thescreenthatarein shadow
from one or more light sources,and it then darkenstheseareasby a constant
amountasapostprocess.It is usuallyreferredto asthesingle-passstencilshadow
algorithmwhile theotherversionis oftencalledthemulti-passstencilshadow al-
gorithm. Note that the improvementsdescribedearlier, (Carmacksreverse,two-
sidedstenciletc.), concernhow we �nd shadowed areasfrom a particularlight

12This is not completelycorrect,seesection5.4for optimizations.
13We havebeenunableto �nd theinventorof thealgorithm.
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source. Theseimprovementsarevalid for both algorithmssincethe distinction
betweenthe single-passandmulti-passalgorithmis how we usethe shadow in-
formation.

The multi-passalgorithm identi�es the areaswhich are in shadow before
addingthe contribution from a light-source. The single-passalgorithmapprox-
imatesthis by addingthe contribution from light-sourcesboth in shadowed and
non-shadowed areasand later compensatesfor this by subtractinga constant
amountof light from theshadowedareas.Themulti-passalgorithmis obviously
themostcorrectof thetwo asthesingle-passalgorithmassumesthatthecontribu-
tion from all light-sourcesto all fragmentsis a constant,which cansubsequently
be removedby subtractions.This assumptionis wrong for several reasons:dif-
ferentlight sourcescanhavedifferentcolors,light sourcesareusuallyattenuated,
shadowsfrom differentlight-sourcescanoverlapeachother, etc.All thesefactors
contribute to a badapproximation,whereshadows tendto look unnatural. See
�gure B.7 for acomparisonof thetwo techniques.

Notice that the single-passrenderinghasa constantcoloredshadow region,
coveringall pixelsthatarein shadow from at leastonelight source(but not nec-
essarilyboth). As a consequencethesidesof thebox aredarkened,eventhough
a light shinesdirectly on both of them. Anotherproblemis that the shadow is
constantcolored. Wherethe two shadows from the barrelcrossthereshouldbe
a darker area,sincenoneof the lights affect this region. Using the multi-pass
algorithmall theseproblemshavebeenrecti�ed.

Theonly redeemingpropertyof thesingle-passalgorithmis theperformance
characteristics.The single-passalgorithmrendersthe sceneonce,andfor every
fragmentit calculatesthelight modelfor all thelights. Themulti-passalgorithm
rendersthesceneoncefor everylight source,eachtimecalculatingthelight model
for a singlelight only. This meansthat thesingle-passonly calculatesthe trans-
formationandprojectionof verticesonce,whereasthe multi-passdoesthis for
every light. Both algorithmscalculatethe light modelapproximatelythe same
numberof times. Sincevertex processingwasa limiting factoron oldersystems
multi-passwasvery expensive. Currenthardware,however, hasrelatively higher
vertex processingpower andtheuseof multi-passis thereforepossible.We have
collectedperformancenumbersfor bothalgorithmson thescenes,viewed in the
screen-shotsin �gures B.1 to B.4. Thetablebelow shows theresults14. Thesec-
ondandthird columnshow thenumberof FPSfor thetwo algorithms,andthelast
columnshows theperformancedropwhengoingfrom singleto multi-pass.

14The experimentwasperformedon a 900MHz AMD Athlon with an ATI Radeon9700Pro
GPUwith per-vertex lighting.
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Location Single-pass Multi-pass difference
B.1 20.0 18.5 8%
B.2 36.0 28.5 21%
B.3 75.0 61.0 19%
B.4 50.0 43.0 14%

As the table shows thereis a performancepenaltyfor using the multi-pass
algorithm,thesemeasurementssuggestsabout15%. However, the performance
is extremelydependenton the amountof optimizationfor both algorithms,and
thesenumbersarethereforevalid only for our enginein its currentversion. But
thenumbersdo show that it is possibleto usethemulti-passalgorithmin a full-
�edged gameengine,andwe areconvincedthat the increasein visual quality is
well worth theperformancepenalty.

3.5 Approximations to the renderingequation

As describedin section2.1.2,the renderingequationcanserve asa standardfor
otherlight modelsto bemeasuredagainst.Equation2.5 is the formulationmost
suitedfor this purpose.In this sectionwe will examinehow thestandardlighting
modeldescribedin section2.2.4andthesingleandmulti-passshadow algorithms
describedabove canbe seenasapproximationsof this equation.The rendering
equationis formulatedat a very high level of abstraction,giving us a compact
descriptionof a lighting modelwhich capturesonly theessentialelements.In the
descriptionbelow we will link theequationsto themoreimplementation-minded
descriptiongivenabove.

Thestandardlighting modelin real-timeapplicationsdescribedin section2.2
canbeformulatedin thespirit of therenderingequationas:

L = v0Le + v0TLe0

The �rst addendis the direct light from a point, i.e. the light re�ected zero
times. If we look at equation2.6,L e correspondsto thexemission andtheglobal
ambientterm. Thevisibility functionv0 is thehiddensurfaceremoval calculated
by thez-buffer. Thezerosubscriptmeansthatit is thevisibility for thelast re�ec-
tion of light, i.e. it is thevisibility betweenfragmentsandthecamera.

The secondaddendis the light re�ected one time. v0 still operateson this
factor, otherwisewe would seelight re�ected off fragmentswhich the z-buffer
hasdeterminedto be invisible. L e0 is the emittedlight, but the zero subscript
meansthat we allow only point light sources15. The T operatoris thereforenot

15Usuallyonly a �x ednumberof lightsareallowed.The�x edfunctionpipelineallowseight.
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an integral, asin the renderingequation,but simply a sumover thecontribution
from theselight-sourceswhich correspondsto the sumover the N light sources
in equation2.6. Notethatthere�ectedtermis missingavisibility operatorwhich
wouldotherwisemakeit v0Tv1Le0 , wherev1 is thevisibility functionfor thenext-
to-lastre�ection of light. Thestandardlighting modeldoesnot includethis term,
which meansno shadowsarecalculated.

Thesingle-passalgorithmcanbeformulatedas:

L = v0Le + v0TLe0 � (1 � ~v1)K

whereK is a constantthatdetermineshow 'dark' shadows are. It resembles
thestandardlighting algorithm,theonly differencebeingthesubtractionof acon-
stantwherethereis 'shadow'. The shadowed regionsaredeterminedby the ~v1

function which approximatesthe true v1 function. If ~v1 is zero, (and1 � ~v1 is
one),we 'darken' the fragmentby subtractinga certainamountof light. The ~v1

functionis calculatedby thestencilbuffer asdescribedin section3.4,andtherea-
sonthatit is anapproximationis thatit computesvisibility for all light sourcesin
a singlepass.Thisapproximationis wrongsinceit entailsthata fragmentwill be
darkenedby the sameamountregardlessof how many light sourcesthat cannot
affect it becauseof shadow. As describedabove this resultsin shadows that are
notablydifferentfrom thecorrectshadowsof themulti-passalgorithm.

The multi-passstencilshadow algorithmcanbe formulatedin the following
way:

L = v0Le + v0Tv1Le0

Sincethemulti-passalgorithmcalculatesvisibility for eachlight sourcesepa-
rately, thevisibility functionfor re�ected light is thereforethe' true' v1 function.
This is the essenceof the differencesbetweenthe single-andmulti-passalgo-
rithms: the single-passusesthe stencilbuffer onceto calculatean approximate
visibility for all light sourcesin onepass,whereasthemulti-passusesthestencil
buffer oncefor eachlight, calculatingthetruevisibility functioneachtime. The
multi-passalgorithmis thereforea goodapproximationto the �rst two termsof
the renderingequation.The only restrictionsare,that light sourcesareonly al-
lowedto bepointsandthat,for performancereasons,we canonly handlea small
numberof them.

The soft shadow algorithm will allow a betterapproximation,althoughthe
differencein this formulationseemssmall:

L = v0Le + v0Tv1Le1

whereLe1 means(a few) sphericallight sourceswith individual radii. This
extensionto sphericalvolumelights meansthatwe now considerin�nitely many
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points as light emitters. However the pointsmust be locatedon the surfaceof
spheres,eachsphereconceptuallybeinga singlelight source.Sincea visibility
functionis evaluatedfor everypointon thelight sourcetheresultis soft shadows.
In practicea singlevisibility function for the entirelight sphereis implemented
giving a percentagevaluerepresentinghow muchof theconceptuallight source
is visible from the light-receiving point. An algorithm that implementsthis is
describedin chapter4.

36



Chapter 4

Soft shadows

Theshadows generatedby thetechniquesdescribedin thepreviouschapterhave
one�a w in common:they arehard. Thetransitionfrom light to shadow happens
over just two pixels: oneis fully lit by thelight source,thenext is in full shadow.
This is not dueto a �a w in thecalculationsassuch,but is a consequenceof the
limitation of the techniques:light sourcesmustbepointsandonly direct illumi-
nationis calculated.Realworld shadowsareusuallysoftwith asmoothtransition
from full light to full shadow. Thishappensfor two reasons:indirectillumination
andvolumelight sources,exactly what the previousalgorithmscouldnot incor-
porate.Light sourceswith a non-zerovolumecausesoft shadows becausethere
arepointswherea part of the light is visible, this is calledthepenumbraregion
andis illustratedin �gure 4.1. Theareawherenothingof the light is visible and
thegeometryis in full shadow is calledtheumbraregion.

Figure4.1: Volumelight sourcesproducepenumbraregions.

Indirect illumination alsotendsto 'softenup' a shadow. This is illustratedin
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�gure 4.2,wherethedashedlines representindirect illumination which bounces
off thewall andinto theumbraregion. Dif ferentareasof theumbrawill receive
differentamountsof indirect illumination. In mostcasesthe intensityof the re-
ceivedindirectlight will grow weakerwhenmoving from anareaneartheshadow
boundaryto an areafurther away from it, andthe shadow will thusappearless
hard.

Shadow caster

Shadow border

Indirect illumination

point light

Figure4.2: Indirectillumination 'softens'anotherwisehardshadow.

Simulatingfull globalillumination, includingtheindirect illumination shown
above, is very hardto do in real-timebut, aswe shall seein the following, it is
possibleto rendershadowsfrom volumelights to producesoft shadows.

Our work with soft shadows hasbeenbasedmainly on a seriesof articles,
[AMA02], [AAM03] and[ADMAM03 ], in which theauthors�rst suggestedand
later re�ned and implementeda techniquefor renderingsoft shadows from ar-
bitrary shadow castersonto arbitrarysurfaceswith real-timeperformanceusing
pixel shaders.Whenwe beganour researchonly the �rst of thethreepapershad
beenpublishedand,asa result,our own implementationdiffers from theirson
severalkey points.On ourown, wedid comeupwith someof thesameimprove-
mentsandimplementationtechniquesthatthey suggestedin thelaterpapers,and
we interpretthisasanindicationthattheideasandtechniquesaresound.

We have alsodevelopedseveral new optimizationswhich greatlyreducethe
lengthof the requiredpixel shaders,the numberof renderingcalls madeto the
graphicsdriver, and the amountof texture memoryrequiredfor look-up tables
usedin theshaders.

In this chapterwe �rst describethe soft shadow techniqueas it appearsin
its �nal incarnationsetforth by Akenine-MöllerandAssarssonin [ADMAM03 ].
Thenwe describeour optimizationsanddiscusstheir impacton theoverall per-
formanceof thetechnique.Finally, we discussanumberof problemsthatremain
unsolveddueto hardwarelimitations.
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4.1 Soft shadowsusingpenumbra wedges

Thehardshadow algorithm,asdescribedin section3.2,usesthestencilbuffer to
maskout thoseregionsof the screenthat arein shadow. The problemwith this
approachis thatthestencilbuffer givesa sortof on/off write mask:eithera pixel
is renderedwith full lighting or it is skippedentirely. To rendersoft shadows we
must insteadmodulateeachpixel with a light intensityfactor that rangesfrom
zero,whenthepixel is in full shadow, to one,whenit is fully lit. Sothemaingoal
of thesoftshadow algorithmis to ef�ciently calculateascreensizedlight intensity
buffer, from now on referredto astheLI buffer, asdescribedin [AMA02]. Once
theLI buffer hasbeencalculatedthesceneis renderedwith diffuseandspecular
lighting, with eachpixel beingmodulatedby the correspondingvaluein the LI
buffer. In a �nal pass,ambientlighting is addedto all pixelsin theimage.In the
following wewill assumethatonly oneobjectcastsashadow from thelight.

4.1.1 Overview

As describedin [AAM03], thesoft shadow algorithmis anextensionof thestan-
dardstencilshadow algorithm,andthecalculationof theLI buffer startsby clear-
ing it to one, indicating that all pixels are fully lit by the light. Next, the hard
shadow for theobjectis renderedinto thebuffer in theusualway, settingthe in-
tensity to zero for all pixels that are insidethe hardshadow. After this step,if
we usedthe LI buffer to modulatethe lighting without any further processing,
theresultwould behardshadows identicalto thoseproducedby usingthestencil
buffer.

Outer penumbra
Inner penumbra

Hard shadow

Figure4.3: Thehardshadow splitsthepenumbra

As seenin �gure 4.3thehardshadow splitsthepenumbraregion into aninner
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andouterpenumbra,andthe idea is now to 'softenup' the shadow aroundthis
hardshadow edge.In theinnerpenumbraregionwemustaddlight to compensate
for thehardshadow algorithmwhichhassettheintensityto zero,eventhoughthe
pixelscan'see'up to half of the light at thehardshadow edge.Similarly, in the
outerpenumbraregion we mustsubtractlight from thosepixelsthehardshadow
algorithmhasdeemedfully lit, eventhoughsomeof themcan'see'aslittle ashalf
thelight. Eventuallywe would like to endup with a gradientthatdecreasesfrom
1 on theoutsideof theshadow to 0 whenit enterstheumbraregion. At thehard
shadow edgeweshouldhaveanintensityof 0.5,asthis indicatestheborderwhere
exactlyhalf thelight is visible.

This adjustmentof the LI buffer is madeusing pixel shadersanda special
renderingprimitive calleda penumbra wedge, (from now on referredto as just
a wedge), asdescribedin [AMA02]. A wedgeis createdfor eachedgeon the
shadow silhouetteand is a closedpieceof geometryconstructedto boundthe
penumbraregiongeneratedby thatparticularedge.By renderingthewedgeswith
a specialpixel shader, we areableto adjusttheLI buffer asrequiredto softenup
the hardedge. We will cover exactly how this is donein a later subsection,but
�rst wedescribethewedgeandits creationin moredetail.

4.1.2 Wedgecreation

edge

Figure4.4: Hyperbolicpenumbravolumefor asphericallight source.

Theexactpenumbraregion for a givenedgeandlight sourcecanbefoundby
sweepinga generalconefrom onevertex of the edgeto the other. The coneis
generatedby re�ecting the light sourcethroughthesweepingpoint on theedge.
It is not feasibleto calculatethe exact penumbravolume in real-time,nor is it
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necessary, aswe shall seelater. It is worth noticing that, assuminga spherical
light source,theexactpenumbravolumewill generallyhavehyperbolicsides,(see
�gure 4.4),whichalsomakesit unsuitablefor tessellationinto triangles,aprocess
that would be requiredto renderthe volume. Instead,the wedgeis createdasa
boundingvolumefor the penumbraregion anda robust methodfor calculating
this is presentedin [AAM03].

Thewedgeis generatedasfollows: let a silhouetteedgee be de�ned by the
two verticese0 ande1. First it is determinedwhich of the two verticesis closest
to thecenterof thelight; assumethat this is e0. Thentheotherone,e1, is moved
towardsthecenterof thelight until thedistanceto thecenteris thesamefor both
vertices.We denotethis new vertex e0

1. Thetwo vertices,e0 ande0
1, de�ne a new

edge,e0, above the original silhouetteedgewhich will be usedasthe top of the
wedgestructure.Notethat this new edgeis only usedfor rasterizationpurposes.
Theoriginalsilhouetteedgeis still usedfor theactualvisibility calculationsin the
pixel shader, asweshallseelater. Now, becausebothendpointsof e0arethesame
distancefrom thelight, thesweptconefrom e0 to e0

1 will generateplanarfront and
backsidesfor thewedgeand,becausewe choseto keeptheclosestvertex �x ed,
thewedgewill fully containthepenumbraregion,see�gure 4.5.

Ratherthanactuallysweepinga coneovere0, thefront andbackplanesof the
wedgearecalculatedby rotating the hardshadow planearounde0 so it exactly
touchesthe light sourceon theotherside. Theplanesfor the left andright sides
of thewedgearecalculatedin a similar way by rotatinga planearoundaxesthat
areperpendicularto e0. Theintersectionof thesefour planes,alongwith abottom
planesome�x eddistanceaway from the light, createsa closedhull: thewedge,
illustratedin �gure 4.6. Noticehow thewedgestructurefully containstheactual
penumbravolumeassweptover theoriginal silhouetteedge.

4.1.3 Culling awayunnecessaryfragments

A wedgeis a3dprimitiveandwhenseenin perspectivefrom theside,therender-
ing of its front facingtriangleswill trigger thepixel shaderfor morepixels than
thoseactuallyresidingwithin thepenumbraregion on thescreen.Thegreaterthe
anglebetweentheview directionandthelight-to-edgedirectionis, thegreaterthe
amountof wastedpixelswill be. However, usingthestencilbuffer it is possible
to cull away mostof thoseunnecessarypixels,asdescribedin [ADMAM03 ]. An
importantobservation hereis that, asthe penumbralies on the geometryof the
scene,it is only necessaryto executethe pixel shaderwherethe wedgevolume
intersectsthescenegeometry. To maskout thisarea,thefront facesof thewedge
arerenderedinto thestencilbuffer, settingthestencilvalueto 1 wherethepixels
passthez-test.This masksout thegrey areaseenin theupper-left partof �gure
4.7. To actuallyexecutethepixel shaderin theintersectionregion, thebackfaces
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e0

e1

e'1

Figure4.5: Planarfront andbacksidesof penumbravolume.

+

front side

right sidee0

e'1

e1

left plane
right plane

Front view

wedge top

front plane back plane

Side view

wedge top

Figure4.6: Generationof awedge.
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of the wedgearerenderedwith the z-testset to 'greater', andthe stencilbuffer
con�gured to only draw wherethe stencilvalueis 1. Renderingthe backfaces
with thisz-testis thesameasrenderingthosepixelson thebackfacesthatfail the
ordinaryz-test,asshown in theupper-right partof �gure 4.7,andby enablingthe
stencilbuffer we have effectively maskedout theintersectionof thetwo regions.
As a result,thepixel shaderis only executedwherethewedgeintersectsthege-
ometry, asshown in the bottompart of the �gure. Note that asthe wedgedoes
not representthe exact penumbravolume,the pixel shadercanstill be executed
for pixelsoutsidethepenumbraregionandcaremustbetakento leavesuchpixels
unchanged.

Front faces that passes z-test

Backfaces that fails z-test

Intersection area

Figure4.7: Maskingout theintersectionbetweenawedgeandthescene.

4.1.4 Modifying the LI buffer

To modify the LI buffer we must somehow calculatethe light visibility factor
for eachfragmentof the scenegeometrythat falls within the penumbraregion.
The �rst thingswe needfor this calculationarethepositionof the fragment,the
silhouetteedgeand the light in somecommonspace. As the light position is
�x edfor all fragmentsin a particularframe,we caneasilyuploadit asa constant
to the pixel shaderin any spacewe want. The positionsof the verticesof the
edgearealso�x edfor anentirewedgeandcaneitherbecalculatedin thevertex
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shader, or, if thewedgesarerenderedoneat a time, beuploadedasconstantsto
the pixel shaderin the spacewe want. Therefore,the challengelies in �nding
the position of the scenefragmentbehindthe wedgefragmentcurrently being
shaded,in anyspace.For technicalandperformancereasonswe have chosento
dothecalculationsin view-space,but [ADMAM03 ] presentsasolutionwherethe
calculationsaredonein world-spaceinstead. In view-space,the positionof the
scenefragmentbehinda certainfragmenton the wedgeis formedasthe tuple,
(x; y; z), wherex andy arethesameasfor thewedgefragmentpositionandz is
thedepthvaluestoredin thez-buffer. See�gure 4.8. Onceall thesepositionsare
known in view-space,it is possibleto calculateavisibility factorfor thefragment,
asweshallseein thefollowing.

Geometry position

Rasterized wedge fragmentView space origin

Scene geometry

Figure4.8: Calculatinggeometrypositionbehindwedge.

To calculatehow muchof the light is visible from a particularfragmentin
the penumbrawith respectto just a singlesilhouetteedge,we project the hard
shadow quadup ontothe light, asseenfrom thefragment.Assuminga spherical
light source,this is the sameas�rst projectingthe edgeonto a circle and then
tracinglines from thecenterof thecircle througheachprojectededgevertex. A
coverage valuecannow be de�ned asthe percentageof the light sourcethat is
coveredby this projection,andit is simply calculatedastheareacoveredby the
projectiondividedby thetotalareaof thelight circle. See�gure 4.9for examples
of thisprojection.

Noticethat for any fragmentwithin thepenumbraregion this coveragevalue
will lie between0 and0.5,being0.5 for fragmentson thehardshadow edge.For
fragmentsin theouterpenumbraregion thecoveragevaluede�nes how muchof
thelight sourceis hiddenby theoccludinggeometrywhile, in theinnerpenumbra
region,it actuallyde�neshow muchof thelight is visiblefrom thefragment.This
meansthat the coveragevaluecanbe usedto modify the LI buffer to createthe
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a) both vertices outside light source b) one vertex inside light source

Figure4.9: Projectingthehardquadontothelight source.

gradient. In theouterpenumbrathecoveragevaluede�nes how muchlight that
needsto be subtractedand,in the inner penumbra,it de�nes how muchlight to
add.See�gure 4.10.

Coverage: 0.50.1 0.30.2 0.4 0.1

Add lightSubtract light

Coverage to gradient

LI buffer LI buffer

Figure4.10:Modifying theLI buffer basedon coverage.

4.1.5 Summing up coveragecontributions

Until now, we haveonly considereda singlesilhouetteedgewhencalculatingthe
coveragevaluefor a fragment.In reality, thesilhouetteform loops,(see[Ass03]
pp. 133–135),and,to properlycalculatethe �nal coveragefor a fragment,it is
necessaryto projecttheentiresilhouetteontothelight source.This is unfortunate
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since,asdescribedearlier, the pixel shadercannotaccessany otherinformation
thanwhatis givento it throughconstantregistersandtherasterizer. Thismakesit
impossiblefor thepixel shaderto haveanythingmorethanlocalknowledgeof the
silhouette.FortunatelywecanuseGreen's theorem,asdescribedin [AAM03], to
calculatethe �nal coverageasa sumof coveragecontributions,evaluatedat one
silhouetteedgeat a time. To addor subtracteachcontribution, whenevaluating
Green's theorem,is basedonthefragmentspositionin thepenumbra,i.e. whether
light shouldbeaddedor subtractedasdescribedabove. As thepenumbraregions
for neighboringsilhouetteedgeswill overlapin an areaaroundthe sharededge
vertex, thepixel shaderwill beexecutedmultiple timesfor eachfragmentin that
part of the penumbraregion, (onetime for eachedge). As a result,after all the
wedgeshave beenrasterizedthe �nal coveragevalueis availableasthe sumof
the contributions. Referto �gure 4.11for two examplesof how to calculatethe
�nal coveragewith Green's theorem.In the�rst example,oneedgeis front facing
to the fragmentwhile anotheris backfacing. This meansthat the fragmentis in
theouterpenumbraregion of the �rst edgeandin the innerpenumbraregion for
theother. Coveragevaluesfor theouterpenumbraareaddedto thetotal coverage
value, while coveragevaluesfor the inner penumbraare subtracted,(sincethe
coveragevaluefor fragmentsin theinnerpenumbrade�neshow muchof thelight
is visible insteadof how muchis covered).In thesecondexample,bothedgesare
front facingto thefragment,sobothareaddedto the�nal coveragevalue.

a) one positive and one negative coverage contribution

b) two positive coverage contributions

Figure4.11:Calculatingcoveragewith Green's theorem.

4.1.6 Summary

To summarize,thestepsfor creatingtheLI buffer are:

1. CleartheLI buffer to one,indicatingthateverypixel is fully lit.
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2. Renderthehardshadow into theLI buffer, settingthelight intensityto zero
for pixelsinsidethehardshadow.

3. For eachsilhouetteedgein theobject,createits wedgegeometry.

4. Renderthewedgeswith a specialpixel shader, oneat a time,andmaskout
theintersectionareabetweenthescenegeometryandthewedgetominimize
theamountof renderedfragmentsoutsidethepenumbraregion.

5. For eachwedgefragmentrendered,(pixel shadersteps):

(a) Calculatethe view-spaceposition of the scenefragmentbehindthe
wedge.

(b) Determineif this fragmentis in theinneror outerpenumbraregion.

(c) Projectthesilhouetteedgefor thewedgeup onto the light source,as
seenfrom thefragment.

(d) Calculateacoveragevaluefrom thisprojection.

(e) Basedon thepositionof thefragment,eitheraddor subtractthecov-
eragevaluefrom theLI buffer.

Theinterestingstepsin thepixel shaderarethosewheretheedgeis projected
into the light sourceto calculatethe coveragevalue,and this is alsowherethe
majorityof thepixel shaderinstructionsarespent.Wewill notgo into any further
detailson how Akenine-MöllerandAssarssonchooseto implementthosesteps,
but theinterestedreadercanreferto theirpapersfor someimplementationdetails.
We will insteadfocus on our own implementationand in the next section,we
describehow wehaveoptimizedthosestepsto greatlyreducetheamountof pixel
shaderinstructionsandtheamountof texturememoryrequiredfor look-uptables.

Dueto certainhardwareproblemsandlimitations it is not possibleto imple-
mentthealgorithmexactly asspeci�ed in thepseudo-codeabove. Like Akenine-
Möller/Assarsson,we have beenforcedto work aroundsomeof thesehardware
limitations. We refrain from mentioningthemin the algorithmoutline above as
they do not affect the basicidea in the algorithm,andassomeof themwill be
overcomeby newer andbetterhardware.We will discusstheproblemsin section
4.3.

4.2 Fast coverage calculation for spherical light
sources

In this sectionwe describeour novel techniquefor highly ef�cient coveragecal-
culationfor sphericallight sources.In [ADMAM03 ], a techniquefor coverage
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calculationfor sphericallight sourcesis presented.Thetechniquerelieson clip-
pingtheprojectedsilhouetteedgeto theboundariesof thelight sourcein thepixel
shader. Thetwo clipped2dpointscanbeusedastexturecoordinatesfor a lookup
in a 4d texturewhich implementsthecoveragefunction. Usingour techniquewe
canavoid theseclippingoperationsin thepixel shaderandlet thetexturesampler
do the clipping for free. We also reducethe dimensionof the coveragefunc-
tion from 4 to 3, which enablesus to encodethe coveragefunction in a smaller
texture. In [ADMAM03 ] Akenine-Möller/Assarssonalsopresentcoveragecalcu-
lation techniquesfor rectangularandeventexturedrectangularlight-sources.Our
new techniquecannotbe usedin thesecasessinceit is a fundamentalrequire-
mentthatlight-sourcesarespherical,but for mostapplicationsthis is areasonable
limitation.

4.2.1 Unit spherespace

For ourcoveragecalculationtechniqueto work weneedto work in aspacewhere
the light sourceis not just sphericalbut actuallya unit sphere.This is doneby
applyinga change-of-basismatrix, (from now on referredto astheCBM), to the
light position,the silhouetteedgeandthe fragmentposition. This CBM simply
scalesthethreecoordinateaxesin R3 with theinverselight radiusandlookslike
this:

CBM =

2

6
4

1
R 0 0
0 1

R 0
0 0 1

R

3

7
5 (4.1)

Becausethe CBM only hasentrieson the diagonal,it canbe reducedinto a
scalingof thevectorit is appliedto, like this:

CBM � V = (
1
R

;
1
R

;
1
R

)V =
1
R

V (4.2)

Thisscalingcanbemadein asingleshaderinstructionperpoint thatneedsto
be transformed.And asdescribedabove only the fragmentpositionneedsto be
calculatedin the pixel shaderso the costof working in unit spherespaceis just
a singlepixel shaderinstruction.In thefollowing we will assumethateverything
hasbeentransformedinto unit spherespace.

4.2.2 Coveragecalculation

To calculatethecoveragevaluefor aspeci�c fragmentwe �rst calculatetheplane
throughthesilhouetteedgeandthe fragment.This canbethoughtof asa ' tilted
hardshadow plane'andwereferto it in thefollowing asthegeoPlane. Next, the

48



signeddistancefrom thelight sourceto thegeoPlane is calculated,call this dis-
tancefor d0. If d0 2 [� 1::1] thentheplaneintersectsthelight source,andthefrag-
mentis actuallywithin the penumbraregion andnot just insidethe wedge.The
signof d0 alsodetermineswhetherthefragmentis in theinneror outerpenumbra
region. If d0 is positivethefragmentis in theouterpenumbra,if it is negativeit is
in theinnerpenumbra.If d0 is exactly zerothefragmentlies on thehardshadow
edge. This classi�cationdetermineswhetherwe shouldaddor subtractlight to
the LI buffer1. Then,the light sourceis projectedonto the geoPlane to a point
we will call thebasePoint . Now we cande�ne thel ightP lane ashaving origin
at the basePoint anda normalin the directionfrom the basePoint towardsthe
fragment.Theintersectionbetweenthelight sourceandthel ightP lane givesus
the 2d circle onto which we want to projectthe silhouetteedge,asdescribedin
earliersections.Referto �gure 4.12for a 2d sideview of theplanesandpoints
describedabove.

Notethat if we projectthein�nite line on which thesilhouetteedgelies onto
thelight, thenthebasePoint liessomewhereonthisprojection.In addition,when
weprojectthetwoendsof thesilhouetteedgeontothelight they will alsolie onthe
line, eitheron thesamesideof thebasePoint or onepointoneachside.Now we
calculatethedistancesfrom thebasePoint to eachof thetwo projectedendsand
denotethemd1 andd2. We cancalculatethecoveragevaluegivenfour piecesof
information:theabsolutevalueof d0, thevalueof d1 andd2, andwhetherthetwo
projectedendsareonthesamesideof thebasePoint ornot. Figure4.13illustrates
this. Note thatdueto symmetrywe areableto rotatetheoriginal coveragearea
aroundthecirclecenteraswell asmirror it aroundthetwo coordinateaxeswithout
changingthe actualcoveragevalue. As a result of this, we can representany
coverageareaasoneof the two forms in the �gure. Also notethateventhough
the �gure might indicateit, it is not a requirementthat both or even any of the
projectedpointsareactuallywithin thelight source.

Eachof the threeparametershasvalid valuesonly whenthey arewithin the
range[0::1]. Whend0 reaches1 thecoveragevaluewill be0, no matterwhatthe
distancesto theendpointsare,andthesamecanbesaidfor any valuegreaterthan
1. Consequentlyit is safeto simply clampd0 to beat maximum1. To calculate
thecoveragevaluethetwo projectedendsare�rst clippedagainstthelight source.
As the light is a unit sphere,themaximumverticaldistancefrom thebasePoint
to thecircleedgeis 1, andthisonly occurswhend0 is equalto zero.For all other
valuesof d0, the verticaldistancefrom the basePoint to the circle edgewill be
lessthanone.Soalsothetwo otherparameters,d1 andd2, canbeclampedto be
within therange[0::1].

1In reality, dueto hardwareissues,anothertechniqueis currentlyusedfor this classi�cation.
We will cover this in a latersection.
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Figure4.12:ThegeoPlane,lightPlaneandbasePoint.
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Figure4.13:Parameterizedcoveragecalculations.
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Assumingthateachparameterlies within its valid range,we cannow encode
the coveragefunction into two 3d textures: one texture for the casewherethe
pointsareonthesamesideof thebasePoint ; andanotherfor thecasewherethey
areondifferentsides.

Theclampingof thethreetexturecoordinatecomponentscouldbedonein the
pixel shaderbeforesamplingthelook-uptexturebut thatis notnecessary. Instead
we usethe built-in clampingoption in the texture samplerwhich performsthe
desiredclampingfor free.

To determinewhichof thetwo coveragemapsthepixel shadershouldsample,
it calculatesthedotproductbetweenthetwo vectorsgoingfrom thebasePoint to
eachof thetwo projectededgepoints.If thetwo pointsareonthesamesideof the
basePoint , theanglebetweenthesetwo vectorswill bezeroandthereforethedot
productwill bepositive. If, ontheotherhand,thetwo pointsareondifferentsides
of thebasePoint , theanglewill be180degreesandthedot productnegative. If
oneor bothof theedgeendpointsshouldbeprojectedexactly to thebasePoint
this will resultin oneor bothof thevectorsbeingthezerovectorand,asa result,
thedot productwill bezero. In thatcase,eitherof thetwo coveragetexturescan
be used,so it doesnot really mattermuchwhich branchthe pixel shadertakes.
In our implementationa dot productof zerowould usethe coveragetexture for
pointsondifferentsidesof thebasePoint .

4.2.3 Optimization summary

In [ADMAM03 ] Akenine-Möller/Assarssonreport that their latest hand-
optimizedversionof thepixel shaderfor sphericallight sourcesrequires59arith-
meticpixel shaderinstructionsand4 samplesinto look-uptextures.

Our versionusesjust 40 arithmeticpixel shaderinstructionsand 3 texture
sampleson graphicscardswithout dynamicbranchingin the pixel shaders.On
cardswith dynamicbranchingthe amountof texture samplesare just 2. With
dynamicbranchingthepixel shadercansimply samplethecorrecttexture,but if
thereis no dynamicbranchingthe pixel shadermustsampleboth textures,and
choosethecorrectvalueafterwards.

As mentionedearlierour pixel shadersareall written in CG andwe have not
attemptedto optimize the output from the compiler by hand. Consequently, it
might be possibleto save a few instructionsthis way to improve performance
further.

In [AAM03] Akenine-MöllerandAssarssonpresentsamethodfor parameter-
izing thecoveragecalculationasa four-dimensionalfunctionusingtwo 2d points
as indices,so eachindex is in the form (x1; y1; x2; y2). As 4d texturesarenot
supportedby any currentgraphicscard,thefunctionis encodedinto a 2d texture
where(x1; y1) determineswhichregion,(or subtexture,asthey call it), to sample
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in, and(x2; y2) looksup theactualcoveragevaluefrom thatregion. They report
thata discretizationof the light sourceinto 32 � 32 regionsprovidesacceptable
precisionin thecoveragefunctionand,asaresult,thesizeof their look-uptexture
is 1024� 1024pixels.Storingeachcoveragevalueasa16-bit �oating-point value,
theamountof texturememoryrequiredfor their look-uptexture is thus2MB. In
additionto this2d coveragetexturethey alsousea cubemapthatimplementsthe
functionatan2(x; y). They donot reportthesizeof thiscubemapbut whatever it
is it mustbeaddedto thetotal texturememorycost.

Using our new techniquethe coveragefunction is reducedfrom a four-
dimensionalinto a three-dimensionalfunction and,with a similar discretization
of thelight source,our two 3d texturesusesjust 65KB each(32*32*32*16bit for
eachtexture).Thesmallsizemeansthatthetexturescaneasilybecreatedat load
timeandneednotbeprecalculatedandstoredin a �le.

4.3 Problemswith the soft shadow technique

Severalproblemshaveyettobesolvedbeforethistechniquefor creatingsoftshad-
owscanbeappliedto ageneralgamescenewith real-timeperformance.Someof
theseproblemsarerelatedto limitations in currenthardware,andwill likely dis-
appearwithin the next few generationsof graphicscards. Other problemsare
relatedto the techniqueitself andchangesto thealgorithmarerequiredto over-
comethem. In this sectionwe discusseachidenti�ed problemalong with the
temporarysolutionor work aroundwe have appliedto implementthe technique
on today'shardware.

4.3.1 Accessto the z-buffer

Oneof the�rst stepsin thepixel shaderis to calculatetheview spacepositionof
thescenefragmentbehindthewedgefragmentthat is currentlybeingrasterized.
The x andy componentsof this positionis copiedfrom theview-spaceposition
of thewedgefragmentbeingrasterized,while thez componentis thevaluein the
z-buffer at thecurrentpixel location.

Theproblemis thatthez-buffer valueat thecurrentpixel locationisn't avail-
ablethroughthepixel shaderAPI. At themoment,theonly feasiblesolutionfor
usingthe z-buffer's datain a pixel shaderis to do an extra passover the entire
scene,usingshadersto outputthedepthof eachfragmentto atexture.Thetexture
canthenbesampledfrom thepixel shaderthatneedsthedepthinformation.Some
GPUscanrenderto multiple rendertargetsat thesametimeandin suchcasesthe
'extra' z-buffer canbe renderedduring the normal renderingof the scene,thus
avoiding the extra pass. However, a screen-sizedtexture is still requiredand it
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usesa signi�cant amountof texturememory. In addition,theextra �ll-rate used
to �ll the depthtexture hasa negative impacton the overall performanceof the
application.

No speci�cation exists for how depth information must be storedwithin a
z-buffer surfaceand, as a result, the different graphicscard manufacturersuse
all sortsof tricks to compressand pack the z-buffer to achieve maximumper-
formance.This alsomeansthat it is expensive to accessthe z-buffer data,asis
evidentin for exampleDirectX whereit getsincreasinglydif�cult to lock andac-
cessthez-buffer with eachnew version.Still aread-onlyaccessto thedepthvalue
of the currentpixel might be availablefrom pixel shadersin a future generation
of graphicscard2. When,or if, this happensit canbe usedto optimizethe soft
shadow algorithmandsavesomemuchneededbandwidthfor therenderingof the
wedges.

4.3.2 Limited blending

With the latestgenerationof graphicscardsthe conceptof �oating point tex-
tureswereintroduced.Theseallowstheapplicationprogrammerto createtextures
whereeachchannnelcontainsa32-bit signed�oating point value.A texturewith
just a single�oat channelwould be perfectfor the LI buffer in the soft shadow
algorithmsincethe light visibility factor is just a single�oat valuein the range
0 to 1. To updatethe LI buffer we would needto be ableto addor subtractthe
contributionsfrom thedifferentwedges.Presentlytheonly way to let theoutput
from a pixel shaderdependon thepreviousvaluein therendertargetis to usethe
�x ed-functionblendingoperation.However the blendingcapabilitiesof current
hardware is quite limited. It is possibleto both addandsubtractvaluesfrom a
rendertarget throughthe blendingoperation,but not without changinga render
statein thedriver. In otherwords,it is not possibleto decidewhetheranaddition
or subtractionis to beperformedfor eachseperatepixel. A solutionto this might
be to setup the cardto alwaysdo additionandthenoutputnegative valuesfor
thosepixelswherea subtractionis required.Unfortunatelythis is not feasibleas
the output from a pixel shaderis automaticallyclampedto lie within the range
[0::1].

To overcomethis problemonecouldusea textureformatwith two channels,
for exampletwo channelswith unsigned16-bit �oating-point valuesis alsopossi-
ble. All positivevisibility contributionscouldthenbeaccumulated,usingnormal
additive blending,in the �rst channelwhile all negative contributionscould be
addedtogetherin thesecondchannel.The �nal light visibility factorcould then
becalculatedin a pixel shaderasthe�rst channelminusthesecondchannel.Us-

2Conversationwith RichardHuddyfrom ATI, ShaderDay2003atDTU
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ing thisapproachthelight visibility factorwouldstill have16bit precisionwhich
is enoughto avoid 'banding' in thegradient.

Unfortunately, on currentgraphicscardsblendingis not supportedat all on
rendertargetswith morethan8 bits per color channel,a limitation which effec-
tively meansthatthenew �oating-point texturescannotbeusedfor theLI buffer.

Dueto this we have useda standardfour channelARGB textureformatwith
8 bits per channelas the LI buffer in our currentimplementation. Two of the
channelsareusedto hold the integer contributions from the hardshadow pass,
muchlikeastencilbufferwould,andwith 8bitsperchannel,wecanthushave256
overlappinghardshadow volumes. As suggestedabove the other two channels
areusedto hold thepositive andnegative gradientcontributionsfrom thewedge
pass.A certainnumberof thebits in eachpenumbrachannelmustbereservedfor
overlapsandin our implementation,we use3 bits for overlapand5 bits for each
coveragecontribution. Using just 5 bits for thecoveragevaluesmeansthatonly
32 different shadows shadesare available, which can lead to visible 'banding'
effectswhenviewing the penumbraregion of a shadow up close. Still, using5
bits for the gradientoffers a decentimagequality. For complex shadow casters
morethan8 overlappingwedgescanoccurandmorebitswill have to bereserved
for thecarry, leaving evenlessfor theactualgradient.See�gure 4.14for a close
up sectionof thepenumbragradientusing8, 5 and3 bits.

Figure4.14:Bandingartifacts
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In [ADMAM03 ], a methodis brie�y mentionedby which the authorssplit
eachcoveragecontribution into multiple channels,obtaininga 12 bit gradient
with 16 possibleoverlapsat the expenseof extra pixel shaderinstructionsand
additionalbandwidthuse. We have chosennot to usethis techniqueaswe will
insteadawait thenext generationsof graphicscardswhichwill hopefullyallow for
blendingto �oating point rendertargets. Evenbetter, the framebuffer blending
might becomea truly customizablecomponentlike the vertex andpixel shaders
alreadyhave3. Oncebetterblendingis available,the soft shadow algorithmcan
easilybechangedinto usingasinglechannel32-bit �oat texture,asoutlinedin the
beginningof thissubsection,allowing for highprecisiongradientswith avirtually
unlimitedamountof overlappingedges.

4.3.3 Splitting the wedgesin two halves

As describedabove,theclassi�cationof afragmentinto theinneror outerpenum-
braregiondecideswhetherlight shouldbeaddedor subtractedfrom theLI buffer.
For every pixel this classi�cationmustmatchthehardshadow classi�cationper-
formedin thehardshadow pass.If for example,a pixel is classi�ed asbeingin
theouterpenumbrain thewedgepixel shader, but thesamepixel hashadits light
visibility set to zeroduring the hardshadow pass,then light will be subtracted
from a pixel whoseLI valueis alreadyzero. Similarly, it couldhappenthat light
is addedto apixel thehardshadow passhasnotmarkedasbeingin shadow. Such
errorsresult in very visible artifactswherepixelsappearoverly bright or overly
darkwithin thepenumbraregion.

It oughtto beimpossiblefor suchanerrorto occurif theclassi�cationof each
fragmentwasmadein thesameway duringboththehardshadow andthewedge
pass,but in reality it doesoccurfor pixelsat or very nearthehardshadow plane.
The reasonis that the hardshadow passis madeby renderinga normalshadow
volume into the LI buffer. Eachtriangle in the hardshadow hull is sentto the
rasterizer, whichdiscretizestheotherwisemathematicallycontinuoussurfaceinto
a �nite numberof fragments,eachwith integercoordinates.This meansthat the
hardshadow edge,asrenderedinto theLI buffer, is not themathematicalcorrect
intersectionbetweentheshadow volumeandtheunderlyinggeometry. As aresult,
it is impossibleto mathematicallyclassifya certainfragmentasbeinginsideor
outsidethehardshadow from thepixel shader.

A solutionis presentedfor this problemin [ADMAM03 ] whereeachwedge
is split into two halves,onefor eachof theinnerandouterpenumbraregions.By
'embedding' the hardshadow hull in the planesthat split the wedges,it is now

3Accordingto RichardHuddyfrom ATI a mechanismfor implementingcustomframebuffer
blendingoperationswill appearin futuregenerationsof graphicscards.
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possibleto ensurethat,whenrenderingfor exampletheinnerhalf of eachwedge,
the pixel shaderwill not be run for pixels nearthe hardshadow edgein the LI
buffer thathasn't beensetto zero.Similarly, whenrenderingtheouterwedgesthe
pixel shaderwill only subtractlight from pixels thatareleft fully lit by thehard
shadow pass.

Theintersectionbetweeneachwedgehalf andthescenegeometrycanbesten-
ciledout to cull awayunnecessarypixelsexactlyasdescribedearlier, andtheclas-
si�cation stepis now no longernecessary. Instead,a constantcanbeuploadedto
the pixel shaderthat determineswhetherto addor subtractlight for all the ren-
deredfragments.

4.3.4 Renderingonewedgeat a time

Perhapsthemostsevereproblemwith thealgorithmin its currentform is thatthe
wedgesmustbeprocessedandrenderedoneat a time. This is a consequenceof
theproblemdescribedabove whereeachwedgeis split into two halvesto avoid
renderingartifactsnearthehardshadow edge.Thissolutionremovedtheclassi�-
cationstep,andthealgorithmnow reliessolelyon thestencilanddepthbuffer to
determinewhich pixels theshadershouldaddlight or subtractlight from. How-
ever, asseenin �gure 4.15,this canleadto problemswhenwedgesoverlap.

A

B

L

problem areas

Figure4.15:Problemwith overlappingwedges.

Figure4.15shows theintersectionbetweentwo wholewedges,A andB, and
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thescenegeometry. If both innerwedgehalveswereto berenderedat thesame
time, the �rst stepwould beto stencilout the intersectionbetweenthemandthe
scene,this areais marked out in gray on the �gure. Now, whenrenderingthe
inner wedgehalf of wedgeA, the pixel shaderwill alsobe executedfor pixels
in A's outer penumbraregion that intersectswith B's innerwedgehalf, (marked
asthe left problemareain the �gure). Sincethesepixelsareactuallywithin the
penumbraregionfor wedgeA, thepixel shaderwill calculateanon-zerocoverage
valuefor them.Moreover, sincewearecurrentlyrenderinginnerwedgehalves,a
constantwill havebeenuploadedto ensurethatthiscoveragevalueis addedto the
LI buffer. As a result,light is addedwherein fact it shouldhave beensubtracted.
For otherwedgecon�gurationsthantheoneshown in the�gure asimilarproblem
canbeidenti�ed whenrenderingmultipleouterwedgehalvesat thesametime.

Thereforethewedgesmustberenderedoneat a time. In fact, therearemul-
tiple renderingstepsinvolvedin renderingjust a singlewedge.To stencilout the
intersectioneachwedgehalf is �rst renderedto the stencilbuffer only andthen
renderedoncemorewith thepixel shaderenabled.Soa total of four rendercalls
aremadefor eachwedge.

This is a very seriousproblembecause,asdescribedin [Wlo03], thereis a
smallbut still signi�cant CPUcostto eachdraw call madeto thegraphicsdriver.
It is reportedthata 1GHzCPUcanissuejust around250004 draw callsat 100%
CPU usage.With four draw calls per wedgeanda desiredreal-timeframerate
of 30FPSthat givesus about200 wedges,(or silhouetteedges),per frameper
gigahertzof theCPU.In general,gamescenesgeneratemany timesthis number
of silhouetteedges5, evenwith just a few light sourcesvisible, andtheCPUthus
becomesthemajorbottleneckin thealgorithm.

This is unsatisfactoryfor severalreasons.First, thespeedof currentCPUsare
magnitudestooslow andit is thereforeunlikely thatincreasesin CPUspeedswill
overcometheproblemanytime soon.Moreover, asGPUscurrentlyevolve faster
thanCPUs,thegraphicsdetail,andthusthenumberof silhouetteedges,will likely
increasefasterthantheCPUspeedtherebymakingtheproblemworseover time.
Secondly, evenif theCPUpower wasavailableit is unfortunateto spenda large
amountof CPUpoweronjust issuingdraw calls. In agame,theCPUis neededfor
many otherthingssuchasvisibility determination,AI, sound,collision detection
andgamescripts.

Fromthediscussionaboveweconcludethatif thesoft shadow techniqueis to
beusedin arealgameanalgorithmicchangethatallowsalargenumberof wedges
to berenderedat thesametime,with asingledraw call is necessary. Wehavebe-
gunwork in this �eld andhavecomeupwith a techniquethatreducesthenumber

4Theexactnumbermightvaryslightly for differentgraphicscardsanddrivers.
5We easilyreach5000silhouetteedgesor morefor simplescenesin our gameengine.
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of draw calls from oneperwedgeto onepersilhouetteloop. Unfortunately, our
currentimplementationof this new techniqueworks only for a limited groupof
objects,namelythosewith convex silhouetteloops. We describethis technique
in moredetail in section4.4andpresentbenchmarkresultsin section4.5to back
theseclaims.

4.3.5 Fill-rate problems

For simple scenes,wherethe numberof draw calls is low, we have identi�ed
anotherbottleneck,this time on theGPU.Our observationis thatperformanceis
quitedependentonscreenresolution.Fromthisweconcludethatthealgorithmis
eitherlimited by theamountof pixelshaderinstructionsexecutedorontheamount
of �ll-rate used.Wehavealreadyputforth asolutionto reducethenumberof pixel
shaderinstructions,(seesection4.2),sothereis notmuchwecandoregardingthe
pixel shader, exceptawait new generationsof graphicscardswith fasterandbetter
pixel shadercomponents.

Regardingthe�ll-rate we have identi�ed a problemcausedby hardwarelim-
itations,which our currentimplementationsuffers from. As describedabove we
usea32-bit four-channelARGB textureasourLI buffer in ourcurrentimplemen-
tation. Two of thechannelsareusedduringthehardshadow passwhile theother
two areusedin the wedgepass.Noneof the passesreadsor writes to channels
usedby theotherpass.The�nal light visibility factoris calculatedfrom all four
channelsbut thecalculationis performedin yet anotherpixel shader, which only
readsfrom theLI buffer.

This meansthatwe couldsplit theLI buffer up into two 16-bit textureswith
two channelseach,onetexture for eachof the two passes.If this waspossible,
we couldreducethe�ll-rate from 32 bits to 16 bits for eachrenderedfragmentin
both the hardshadow andwedgepass,in effect cutting the total �ll-rate in half.
Thepricefor thisoptimizationwould bethattheshadercalculatingthe�nal light
visibility factorwould have to sampletwo LI buffer texturesinsteadof one,but
thesumof thesampleddatawouldstill be32bitsperfragment.

In fact,a suitabletexture format existson currentgraphicshardwarebut un-
fortunatelyit cannotbeusedasrendertargetwith supportfor blending,which is a
requirementto implementour LI buffer. Again, in futuregenerationsof graphics
cardswe expectto be ableto customizethe blendingstepfrom within thepixel
shaderallowing us to implementtheLI buffer asa single-channel�oating point
surfacewith either16or 32 bitsprecisionthusreducingtherequired�ll-rate.
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4.4 The per-loop algorithm

In thissectionweoutlineournew techniquewhichallowsusto batchtogetherthe
renderingof multiple wedgesinto a singledraw call, thusovercomingthemajor
CPUbottleneckwe identi�ed in section4.3.4.Thenew techniquealsoallows us
to usetheoriginalnon-splitwedges,describedin section4.1.2,withoutsacri�cing
apixel-preciseclassi�cationof whethera fragmentis locatedin theinneror outer
penumbraregion. Thisreduces�ll-rate, vertex transformations,andthesizeof the
datatransferredover theAGPbuseachframe,(in thecaseof animatedgeometry
or lights). Unfortunately, themethoddoesnotwork for generalshadow casters.

Theoriginalversionof thesoftshadow algorithmperformstwo differentclas-
si�cations regardingeachfragment:whetherit is in hardshadow or not,this is de-
terminedin thehardshadow pass;andwhetherit is in theinneror outerpenumbra
region,whichis decidedin thepixel shaderusedfor thewedgepass.As explained
in section4.3.3,thesetwo classi�cationsmustmatchexactly or visible artifacts
will occur. Splitting the wedgesin halvessolvesthe problem,but consequently
eachwedgemustberenderedseparately.

Anothersolutionto theproblemis to performbothclassi�cationstepsin the
sameplace,namelyin the wedgepixel shader, usingthe samedatato make the
classi�cations.Thatwaywecanmakesurethetwo classi�cationswill match.

Figure4.16:Silhouettewith threeedgesprojectedontothelight plane.

In �gure 4.16weseethreeconnectedsilhouetteedges,projectedontothelight
planeasdescribedin section4.2.2.Thedeterminationof whethera fragmentis in
the inneror outerpenumbraregion, with respectto a singleedge,is determined
by the centerof the spherebeing in front of the single projectededgeor not,
asexplainedabove. The determinationof whethera fragmentis insidethehard
shadowareaor not is determinedby whetherthecenterof thesphereis covered
by theprojectionof all theconnectedsilhouetteedgesontothelight. Figure4.16
thereforeshowstheprojectionfor a fragmentoutsidehardshadow.

We seethatwhile theclassi�cationof a fragmentbeingin the inneror outer
penumbraregion is an 'edge local' property, the classi�cation of being inside
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or outsidehardshadow is not. However hard shadow is not a global property
either. For a particularlight sourcea fragmentcanbecoveredby shadows from
many differentobjects.Beinginsidethehardshadow region from oneshadow is
independentof othershadows. Thesilhouetteedgesfrom ashadow-castingobject
form loops,(see[Ass03] pp. 133–135),andeachloopcanbethoughtof asasingle
shadow, eachwith a hardshadow region. Hardshadow is thereforea 'silhouette
loop local' property.

If we assumethat the silhouetteloops form convex shapes,whenprojected
ontothe light plane,thena fragmentis in hardshadow if, andonly if, it is in the
innerpenumbraregionfor all theedgesof theloop. Wecanthereforelet thewedge
pixel shaderuseachannelin therender-targetfor 'hardshadow data'.Concretely,
wecanlet theshaderadd1 to thischannelif thefragmentis in theouterpenumbra
region for a wedge,thus �agging that the fragmentcannotpossiblybe in hard
shadow. After renderingall thewedgesof thesilhouetteloop, a subsequentpass
canthendeterminewhethera fragmentis in hardshadow simply by checkingif
the'hard shadow data'channelis still zero,thevalueit is clearedto. Besidesthis
hardshadow datavalue, the wedgepixel shaderalsooutputsa coveragevalue,
calculatedasin theoriginal algorithm,that it eitheraddsor subtractsfrom theLI
buffer, basedon its classi�cation. Using this approach,the wedgepixel shader
effectively performsboth classi�cation stepsand no renderingartifactsappear
nearthehardshadow edge.

The considerationsabove form the basisof our new algorithm,in which we
reducethenumberof rendercallsmadeto thegraphicsdriverby batchingtogether
all wedgesfor eachsilhouetteloop. Sincethenumberof edgesin asilhouetteloop
is at least3, (andoften muchhigher), this addressesthe CPU bottleneckof the
originalalgorithm,asidenti�ed in section4.3.4.

We now describesomeof the detailsthat arenecessaryfor an actualimple-
mentationof our idea. First of all, the calculationof the �nal LI valueusedto
modulatethe light is a bit more complex than in the original algorithm. The
subsequentpassmentionedabove thatchecksfor thehardshadow propertymust
be implementedin a pixel shaderwhich we will call the coverageTransferpixel
shader. Thispixel shadercalculatestheloop local LI valuefrom theoutputof the
wedgepixel shader, andtransfers it to the�nal LI-buffer. In our implementation,
theloop local LI valuesaresimplyaddedtogetherto form the�nal LI value6.

ThecoverageTransferpixel shaderhastwo maincases:eithera fragmentis in
thepenumbraregionor it is not. Thiscanbedeterminedby checkingif thecover-
agevalue,thedifferencebetweenthepositiveandnegativecoveragecontributions
from thewedgepixel shader, is non-zero.If it is non-zero,thefragmentmustbe

6As describedin [ADMAM03 ] section5.1,this is notentirelycorrectandit wouldbepossible
to usethesuggestedaveragevalueinstead.
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within the penumbraregion sincethe wedgepixel shaderhasonly beenrun on
fragmentsinsidethis region. Now we checkwhetherthe fragmentis in thehard
shadow region,which canbedoneby determiningwhetherthehardshadow data
valueis still zero,asexplainedabove. If the fragmentis in hardshadow then1
mustbeaddedto thecoveragevalue,(in theoriginal algorithmthis is performed
in the hardshadow pass).If we areoutsidethe penumbraregion thenthe cover-
agevalue is calculatedpurely basedon the hardshadow pass,which muststill
beperformedin our new algorithmto shadow thefragmentsin theumbraregion.
Section6.4showstheCGcodefor thecoverageTransferpixel shader.

From the accountabove we seethat the wedgepixel shadercan no longer
renderdirectly into the �nal LI-buffer. Insteadwe usea buffer calledthe Loop-
Buffer to hold the loop local LI values.As with the LI buffer, it mustcurrently
be implementedwith a 4-channel32-bit ARGB surfacesincewe needto beable
to blend(add)valuesto it. The �rst channelis usedfor thehardshadow passto
�ag thosefragmentsthatarein theumbraregion, exactly asin thestencilbuffer
algorithm. Thesecondchannelis usedfor thehardshadow data�ag andthe last
two channelsareusedfor the positive andnegative coveragecontributionsfrom
thewedges.TheLoopBuffer is setasrender-targetwhenrenderingboththehard
shadow passandthewedges,andis usedasa texturewhenrunningthecoverage-
Transferpixel shader.

To summarizetheabove,a step-by-stepdescriptionof theper-loop algorithm
is givenhere:

1. Clear�nal LI-buffer.

2. For eachsilhouetteloopL:

(a) CleartheLoopBuffer andsetit asrender-target.

(b) Renderthehardshadow for L.

(c) Renderthewedgesin L.

(d) Setthe�nal LI-buffer asrender-targetandtheLoopBuffer astexture.

(e) Rendera screen-sizedquadwith thecoverageTransferpixel shader.

3. UseLI-buffer to modulatelighting asusual.

Unfortunately, thereareseveralproblemswith thisalgorithm.Firstly, wehave
assumedthattheprojectionof silhouetteloopsis convex, andthis is generallynot
the case. Non-convex loopsmake the determinationof being insideor outside
thehardshadow muchharderandcurrentlywehavenosolutionfor thisproblem.
Secondly, therenderingof a silhouetteloop is followedby thecoverageTransfer
pass,which is expensive sinceit executesa pixel shaderfor every pixel on the
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screen.In addition,theLoopBuffer, ascreen-sizedrender-target,hasto becleared
for eachsilhouetteloop. Finally, thenumberof rendercalls canstill behigh, as
complex modelscanhavemany silhouetteloops.

Themany extrapixelshaderexecutionsandtheclearoperationfor eachsilhou-
etteloop becometheperformancebottleneckof thenew algorithm,and,because
of this, the per-loop algorithm is quite slow, generallyslower than the original
algorithm.However theper-loopalgorithmhasaninterestingproperty:it is GPU
limited, whereastheoriginal algorithmis CPUlimited becauseof thelargenum-
berof rendercalls.As describedabove,sincethegraphicscardscurrentlyevolves
muchfasterthanCPUs,thismight beagoodtradeoff.

Notealsothatsomeoptimizationscouldbe implementedto improve theper-
formanceof theper-loopalgorithm.An exampleof this is that,it is notnecessary
to executethe coverageTransferpixel shaderfor every pixel on the screen,only
for thoseaffectedby therenderingof thesilhouetteloop, which might only bea
smallfractionof thepixelson thescreen.

4.5 Performanceanalysis

We have implementedboth theoriginal andour new per-loop versionof thesoft
shadow algorithm,usingour optimizedcoveragecalculationtechniquefor both
versions.In this section,we presentsomeperformancemeasurementsthatshow
how the bottleneckis indeedfound in different placesfor the two techniques.
Four testscenes,asshown in �gure B.6, arerenderedin two differentscreenres-
olutions,(640x480and1024x768),andon two differentCPUs,(anAMD Athlon
900MHzandan Intel Pentium43GHz). An ATI Radeon9700Prographicscard
wasusedfor all tests. The testhave beenconstructedto graduallyincreasethe
numberof lights andobjects,andconsequentlythe numberof wedges.Below,
two tablessummarizethemeasuredperformancein FPS.

1024x768 900MHz 3GHz
Scene #wedges Orig. Per-loop Orig. Per-loop
1 4 71.0 68.0 78.0 73.0
2 64 55.0 42.0 59.5 44.0
3 538 13.0 9.0 19.0 8.5
4 756 8.5 6.5 15.0 6.5
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640x480 900MHz 3GHz
Scene #wedges Orig. Per-loop Orig. Per-loop
1 4 175.0 168.0 190.0 179.0
2 64 82.0 103.5 136.5 108.0
3 538 13.0 21.5 35.0 22.0
4 756 8.5 16.0 22.5 16.5

As canbeseenfrom thetables,theoriginalalgorithmquickly becomestotally
CPUboundon the900MHzCPU,andachangein resolutionhasnoeffect on the
performance.This is thecasefor testscenes3 and4.

With enoughCPU power available, the original algorithm is insteadGPU
bound,which is why a similar patterncannotbe found on the 3GHz CPU or
in thetwo simplestsceneson the900MHzmachine.Still, in thelower resolution
wherethetechniqueis lesslikely to beGPUbound,performanceis predictablefor
theoriginal algorithm. Thedrawing of a singlewedgerequiresfour passes:two
for eachwedgehalf. Therefore,in testscene4, thereare3024rendercalls just
for thewedges,andtherenderingof thehardshadow andtheobjectsthemselves
mustbeaddedto this number. As explainedin section4.3.4,it is possibleto per-
form somewherearound25000rendercalls per 1GHz CPU, if the CPU is used
for nothingelse. Assumingthis is the case,androundingthe 900MHzmachine
to 1GHz,we canexpectmaximumpossibleframe-ratesof 1GHz*25000/3024=
8.2FPSand3GHz*25000/3024= 24.8FPSfor the two CPUsrespectively, num-
bersremarkablycloseto thosemeasuredfor theoriginalalgorithm.

Theper-loop algorithm,on theotherhand,appearsto betotally GPUlimited.
For all thetestscenes,adecreasein resolutionresultsin a largeperformancegain.
In addition,performanceis comparablefor thetwo CPUsin bothresolutions.
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Chapter 5

Shadow management

Renderinga shadow volumeis relatively expensive andin an environmentwith
many light sourcesand whereall objectscastshadows, the amountof shadow
volumesin the scenequickly grows to very large numbers. Consequentlyit is
very importantto be ableto cull away the shadow volumesthat areoutsidethe
viewing frustum,andthusdo notaffect the�nal image,before they areprocessed
by thegraphicscard.

In this chapterwe �rst describea culling techniquecalled'frustum culling',
which rejectsobjectsoutsidethe viewing frustumbasedon their boundingvol-
umes. We then presenta methodfor calculatinga boundingvolume for VS
shadow volumes. Next, a datastructurecalleda 'scenetree' is presented.The
scenetree is basedupona quad-treebut hasbeenmodi�ed so that it is able to
handledynamicsceneswith moving objectsin anef�cient way. Wedescribehow
to usethescenetreeto accelerateintersectionqueriesbetweentheobjectsin the
sceneandvariousvolumessuchasafrustum,sphereor box. Finally, weconclude
thechapterby presentinganoptimizedversionof themulti-passstencilshadow,
usingtheculling techniquesto speedup theoverall renderingof thescene.

5.1 Frustum culling

Along with thenearandfar clipping plane,thecamerade�nes a frustumshaped
volumethatenclosesall visible geometryfor a particularframe. Only thosetri-
anglesthatarefully containedin or intersectthisvolumearevisibleonthescreen
andmustberenderedby thegraphicscard,therestcanbeculledaway andtheir
processingskipped.

As turnsout, it is too expensive to performthis culling checkfor eachindi-
vidual trianglebecausein thetime theCPUspendson culling awaya trianglethe
GPUcaneasilymanageto renderit. Instead,aboundingvolumeis calculatedfor
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Figure5.1: Theviewing frustum

a groupof trianglesthat is likely to berelatively closeto eachother. In [Wlo03],
Wlokareportsthatanno2003themaximumtrianglethroughputfor nVidia graph-
ics cardsis achievedby renderingtrianglesin batchesof 500or moretrianglesat
a time,sothis is alsoagoodsizefor thetrianglegroupsusedfor frustumculling.

The ideais that if the boundingvolumefor sucha groupis fully outsidethe
viewing frustumthensoareall thetrianglesit contains.If, on theotherhand,the
boundingvolumeis fully containedin or intersectsthefrustumthenall triangles
insideit arerendered,evenif a few (or evenmost)of themareactuallyoutsidethe
frustum. In largeandcomplex scenes,thefrustumculling techniquecanquickly
cull away a largepercentageof thetrianglesthatareoutsidetheviewing frustum
andthusit canacceleratetherenderingof thesceneconsiderably.

Two typesof boundingvolumesthatareoftenusedfor frustumculling arethe
boundingsphereandtheaxis-alignedboundingbox1.

The intersectiontest betweena sphereand a frustum is simpler and thus
quicker than the test betweenan AABB and a frustum so it would seemrea-
sonableto usea sphereastheboundingvolume.And it is thebestchoiceindeed
for thosemeshesthatareproperlyapproximatedby a sphere,but oftenanAABB

1Oftenreferredto asanAABB, it is aboxwith sidesthatareparallelto theX,Y or Z plane.As
its orientationis �x ed,it canbedescribedby just two points- aminimumandmaximumpoint.

65



givesamuchtighter�t aroundameshmakingit amoresuitableboundingvolume
asillustratedin �gure 5.2. Themore'air' thereis insidea boundingvolume,the
greateris thechancethat theboundingvolumewill intersectthefrustumwithout
anyof its containedtrianglesdoingso,which is theworst-casescenarioin frus-
tum culling. Whenthis is combinedwith thefactthatwhile it is easyto calculate
a boundingspherefor a meshit is not trivial to calculatetheminimumbounding
sphere,it becomesclearwhy theAABB is themostcommonchoicefor bounding
volumes.

a) Bounding box b) Bounding sphere

Figure5.2: Boundingvolumes

To performintersectiontestsbetweentheview frustumandboundingvolumes
the frustum is representedassix planes,all with normalspointing towardsthe
insideof thefrustum. In orderto checkif a singlepoint is within thefrustumwe
just have to determinewhetherthepoint is in front of all six planes.If this is the
case,thenthe point mustbe within the volume. Checkinga sphereagainstthe
frustumisn't muchharder, we justhave to checkthatthesphereisn't fully behind
any of theplanes.In otherwords,wemustcheckthatthesigneddistancefrom the
spherecenterto eachplaneis greaterthanthenegativesphereradius.Determining
whetheranAABB andafrustumintersectsis abit morecomplicatedastheAABB
consistsof two pointsthatcanappearin many differentcon�gurationsrelative to
the view frustumplanes.But themain ideais still to checkthe spatialrelations
betweenthetwo pointsandthesix frustumplanes.

5.2 Bounding a vertex shadershadow volume

For any rigid objectwith a constantsizeandposition in world-spaceit is easy
to calculatea boundingvolume,andusethis for culling. However,asdescribed
above in section3.3.3,a VS shadow volumeis extrudedby thevertex shaderin a
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directionthatdependsonthepositionof thelight. Thismakesit hardertocalculate
a boundingvolumethatenclosestheshadow volumebecausewe do not have the
extrudedversionin systemmemory. Thereforwe cannotsimply loop throughthe
verticesto measuretheirextent.

What we can do is calculatethe AABB for the collapsedshadow volumein
object-space.By simulatingthe vertex shader, which performsthe extrusionof
theshadow volumeonthisboundingbox,wegetanextrudedbox,andtheAABB
of thisboxis guaranteedto enclosetheextrudedshadow volumealso,thusmaking
it avalid boundingvolume;see�gure 5.3.

Shadow volume bounding box

Shadow volume

Extruded bounding box

Figure5.3: Boundingavertex shadershadow volume

Actually, sincewedonotneedaclosedshadow hull for theextrudedbounding
box,(wewill notrenderit, wejustneeditspointssowecanmeasureitsextent),we
donotneedto createaspecialversionof it with degeneratetrianglesateachedge
aswasthe casewith the normalgeometry. Nor do we needto determinewhich
edgesareon thesilhouettein orderto extrudeit. Insteadwe just extrudeall eight
pointsandcalculateour�nal boundingboxby takingtheminimumandmaximum
points of the eight original points and the eight extrudedones. The resulting
boundingbox may be slightly larger thanwhat we would have gottenfrom the
trueextrudedbox,but it will neverbesmaller, soit is avalid boundingboxfor the
shadow volume.Thereducedcomplexity of extrudingtheboxoutweighsthefact
thatourboundingvolumeis notastight a �t asit couldbe.
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5.3 Scenetr ee

A scenetreeis adatastructureintowhichonecaninserttheobjectsin ascene.The
scenetreesupportsef�cient queriesto obtaintheobjectsthat intersectsdifferent
volumessuchasa frustum,sphereor box. Often a sceneis dynamic,with one
or moreanimatedandmoving objects. This implies that our scenetreeshould
provide fast remove andinsertoperationsso that we canef�ciently re-insertan
objectwhenit hasmoved.

The scenetreewe presenthereis basedon a quad-tree2 but hasseveral key
differenceswhich we will describelater. A quad-treeis a rootedtreewhereeach
nodehasfour children,hencethename.Eachnodecorrespondsto a 2d square,
andthefour childrenof anodecorrespondto thefour quadrantsof thissquare.As
in any treestructure,thenodesthatdo not have childrenarecalledleavesandis
usuallywherethedatais stored.Oneapplicationof aquad-treeis to storeasetof
pointsin theplane.In thatcase,thesquareof therootnodeis equalto abounding
squareto all the points,andthe tree is thensubdivided until no morethanone
point residesin eachleaf; see�gure 5.4.

NE NW SW SE

Figure5.4: Storingpointsin aquad-tree

Even thougha quad-treeis a 2d structurewe caneasilyextendit to storing
pointsin 3d. We simply assigna �x edtop andbottomy valueto eachnode,f.ex.
taken from the3d boundingbox of all thepoints,makingeachnoderepresenta
3d box insteadof a 2d square.The treeis still only subdividedalongtwo axes,
namelytheX andZ-axis,soeachnodestill hasexactly four children3.

In its basicform, a quad-treehasseveral propertiesthat make it unsuitable
for useasa scenetreethough. For exampleit is not balancedandthe depthof
a particularbranchdependson the densityof the storeditemsin the region the

2Many sourcesdescribethequad-treef.ex. [dBvKO00]
3A variantof the quad-treeexists which alsosubdividesalongthe Y-axis. As this resultsin

eachnodehaving eightchildreninsteadof four, this variantis appropriatelycalledanoctree.
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branchcovers. This meansthatwhenan item is movedandre-insertedin a new
region of the treenew subdivisionsmay occurwhich involve allocationof new
leaves,splitting itemsinto thesenew leaves,deletionof theold leafetc.

However, we want to beableto setup thescenetreeonceandfor all at load
time andthenbe ableto move itemsaroundwithout makingany changesto the
overall structureof the tree. We alsowant to usethescenetreeto storeobjects,
insteadof justpoints.Thismeansthatit is notalwayspossibleto subdivideanode
sincetheobjectsinsideit mayoverlapeachotheror theboundariesbetweentwo
children.An objectcanalsobefully containedin anodebut beunableto �t inside
any of thechildren.In �gure 5.5objectsA andB spansmultiplechild nodesand
cannotbeput into eitherof themwhile objectC is smallenoughto beput into the
lower left subdivision.

A

B
C

A

B
C

Figure5.5: Splittingobjects

To overcometheallocationproblems,wesetupourscenetreeasa full hierar-
chy of preallocatedandinitially emptynodesandleaves. As with thequad-tree,
westartwith aboundingbox for all theobjectswewantthescenetreeto contain.
However, ratherthansubdividing thetreeuntil theamountof objectsin eachleaf
is smallenough,we subdivide thetreeuntil thesizeof eachleaf is smallenough.
What this size is exactly dependson the objectsbeingstoredin the tree,but it
shouldbe at leastas large asthe smallestobject in the scene,(any leaf smaller
thanthis will not beableto containany objectsanyway). As thetreeis intended
to accelerateculling queries,it is actuallynotdesirableto subdivide it all theway
down to the individual objects,so in practicethe leavescanbe large. In our im-
plementationeachleafhasasidelengthof 5 metersin ourvirtual world.

To overcomethe splitting problem,we extendour scenetreeso it canstore
objectsin thenodesaswell asin the leaves. To insertanobjectinto the treewe
'push' it asfar down the treeaspossible,putting it in the tightest�tting nodeor
leaf. As theroot nodein thescenetreehasa box thesamesizeasthebounding
boxof thesceneit cancontainany objectin thesceneand,asaresult,aninsertion

69



into thescenetreecannever fail.
As theremoval of anobjectdoesnot affect theoverall structureof thescene

treeit canbeperformedby simply removing theobjectfrom thecontainingnode
or leaf. If objectsareassigneda handleto their scenetreenodeat insertiontime,
removal canbe donein time O(1). Insertionof an objectdoesnot changethe
overall structureeither, andcanbe donein time linear in the depthof the tree.
This is O(log2(m)), wherem is themaximumof theX andZ sidelengthsof the
sceneboundingbox.

Usingtheimplementationdescribedabove,it is possibleto handlesceneswith
dynamicobjectsef�ciently andin typicalgamescenes,wheretheamountof mov-
ing objectsis relatively small, thereis no signi�cant performancehit involvedin
re-insertingthemovedobjects.As a furtheroptimizationit is worthnoticingthat,
over a singleframe,a moving objectwill oftenonly have movedwithin thenode
or leaf that it alreadyresidesin, makinga re-insertionunnecessary. A checkfor
this casecanperformedin constanttimeusingtheobjectshandleto its scenetree
node. Also insteadof removing an objectandre-insertingit from the root, it is
possibleto pushtheobjectupwardsin thetreeuntil it is fully containedin anode,
andthenpushit downwardsasfar aspossible.In somecasesthis methodfaster
thandoinga full re-insertion,but in theworst-casescenariothecostis doubled.

Thescenetreecanbeusedto accelerateintersectionqueriesbetweentheob-
jects in the sceneandvolumessuchasa frustum,a sphereor a box. The main
ideais that if a node's box is fully outsidethevolumethenall its childrenmust
be outsideaswell andwe cantotally skip the sub-tree.If a node's box is fully
containedin thevolumethensoareall theobjectsthat thenodeandits children
contain.Thus,we canincludeall objectsin this node's sub-treewithout any fur-
ther intersectionchecks.In the�nal case,wherethevolumeintersectsthenode's
box,eachobjectin thenodeis checkedfor intersectionandthealgorithmis called
recursively oneachof thefour children.

Assumingaroughlyequaldistributionof objectsthroughoutthescenetreethis
meansthatwith a singleintersectionchecklargepartsof thescenecanbeculled
away. In �gure 5.6, just threechecksbetweenthesphereandthenodeboxesat a
certainlevel in thescenetreeculls away 3

4 of all objectsin thesub-tree.

5.4 Ef�cient shadow rendering

In the following we will assumethat all lights areomni-directionalpoint lights
with a �nite range. This meansthat eachlight sourcehasa sphere of in�uence
with its centerat thepositionof thelight andaradiusequalto thelight range.The
light cannotaffect objectsoutsideits sphereof in�uence.

Themulti-passstencilshadow volumeis describedin section3.2.2.Oneof the
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Sphere query

Figure5.6: Culling grey areaswith threeintersectionchecks

sub-routinesin the algorithmis to renderthe scenefor every light-sourcewhile
usingthe stencil-buffer to allow drawing solely in areasthat are illuminatedby
thelight. If we follow thisprocedureblindly, wecouldendupdoinga lot of work
thatwouldhavenoeffectonthe�nal image.Thesearethethreemaincaseswhere
super�uouswork oftenoccur:

1. A light-sourcedoesnot affect anything in the view frustum. In this case,
boththerenderingof shadow volumesfor the light andtheextra passover
thegeometryis redundant.

2. An objectis sofar away from a visible light-sourcethattheobjectreceives
no light from it. In this case,the renderingof the objectand its shadow
volumeis redundant.

3. An objectis affectedby alight source,but theshadow volumeis outsidethe
view frustum.In thiscasetherenderingof theshadow volumeis redundant.

As describedin section5.1, there is an ef�cient algorithm for checkinga
sphereagainsta frustumso to avoid casenumber1 in the list above we simply
have to checkthe light source's sphereof in�uence againsttheview frustum. If
the sphereis fully outsidethe view frustumthenneitherthe light sourcenor its
shadow volumescanaffect the�nal imageandwecanskipany furtherprocessing
of thelight. Thecostof �nding thelights thataffect theview frustumin thisway
is linear in the total numberof lights in the scene,andwhetheror not to accel-
eratetheprocessthrougha treestructuredependson theapplication.In practice,
however, mostsceneswill probablyhave relatively few light sources4 and it is
unlikely thatsimply checkingall light sourceslinearly will resultin a signi�cant
performancedropasthe'spherevs. frustum' checkis fairly cheap.

4Usuallylessthan100.
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If a light affectsthe�nal image,wemustrenderall theshadow volumesit has
caused.Naturally, only thoseobjectsin thescenethat lie within thelights sphere
of in�uencecancastashadow from it. Wecantherefore�nd thesetof objectsthat
intersectsthe lights sphereof in�uence andrenderonly theshadow volumesfor
those.In doingso,we haveavoidedcasenumber2 in thelist above. Again, there
is anef�cient intersectionalgorithmfor AABB vs. spherechecksthatwecanuse
to checkthe object's boundingbox againstthe sphereof in�uence. However, a
sceneoftencontainsmany objects,anda linearalgorithmthatcheckseachobject
againstthe sphereof in�uence will be too slow. Insteadwe setup a scenetree,
asdescribedin section5.3,anduseit to quickly �nd all objectsthat intersectthe
light'ssphereof in�uence.

Oncewe have thesetof objectsthat intersectsthelight's sphereof in�uence,
andthusthesetof potentiallyvisible shadow volumes,we notethat it is possible
for avisible light to causeashadow volumethatis fully outsidetheview frustum.
To avoid renderingthesewe simply checkeachshadow volume's boundingbox
againsttheview frustum. For shadow volumescalculatedon the CPU it is easy
to maintaina boundingbox,andfor shadow volumesextrudedin a vertex shader
wecalculateaboundingboxasdescribedin section5.2.Throughthis lastculling
mechanismwe have avoidedcasenumber3 in the list andshouldbe rendering
only thoseshadow volumesthatactuallyaffect the�nal image.

We have usedthe ideasdescribedabove to modify the multi-passstencil
shadow algorithmandmake it capableof renderinglargescenesef�ciently:

1. Clearcolor-buffer andz-buffer.

2. Renderthescenewith only ambientandemissive lighting.

3. For all lights l:

(a) Checkl 's sphereof in�uence againstthe viewing frustum. If l does
not intersectthefrustumweskip it.

(b) Querythescenetreefor thesetof objectso thatintersectsl 'ssphereof
in�uence. For every objectin o, checktheAABB of the l-generated
shadow volumeagainsttheview frustum.

(c) Clearstencil-buffer, disablewriting to color-buffer andz-buffer, set
z-buffer testto less-than.

(d) For all visible shadow volumesv:

i. Renderall front facingtrianglesof v generatedby l, incrementing
thestencilvaluewhenpassingthez-test.

ii. Renderall back facingtrianglesin v generatedby l, decrementing
thestencilvaluewhenpassingthez-test.
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(e) Re-enablewriting to color-buffer, setz-buffer testto equal,setstencil
testto passwhenvalueis 0, andsetadditiveblending.

(f) Renderall objectsin o with only diffuseandspecularlighting from l.

Themodi�cation doesnot affect optimizationsof the innermostloop suchas
thetwo-sidedstenciltechniqueandCarmacksreverse,describedin section3.3.

Using theabove culling proceduresdoesnot guaranteethata scenedoesnot
generatetoo many visible shadow volumesfor thegraphicscardto handleat an
acceptableframe rate. In that case,we can start culling away visible shadow
volumes.As this will resultin visualerrors,it is important�rst to cull away the
shadow volumesthat contribute leastto the �nal image. We suggestcalculating
an 'importancevalue' for eachvisible shadow volume,basedon someheuristic,
andthensortingtheshadow volumesandrenderingthemostimportantones�rst.
It is thenpossibleto allot acertainamountof timeor trianglesto eachlight andto
stoprenderingshadow volumesoncethatamounthasbeenexceeded.

Two factorscanbeusedin calculatinganimportancevaluefor a shadow vol-
ume: thedistancefrom thecenterof thevolumeto thecamera,andtheprojected
sizeon thescreenof its boundingbox. Theideabehindthe�rst factoris thatwe
wouldrathercull awayadistantshadow volumethanacloseone,asit is likely the
viewerwill focusmoreongeometryin theforegroundthanin thebackground.The
ideabehindthe secondfactoris that we would rathercull away smallershadow
volumesasthey contributelessto the�nal imagethanlargerones.

Determininghow to weighthesetwo factorsrequiressometweakingandde-
pendson thescenein question.Sometimesa largeshadow in thebackgroundis
much more importantthan a small onecloseto the camera,whereasin scenes
whereeachshadow volumeis approximatelythesamesizeonemightwantto sort
thevolumespurelyby distanceto thecamera.
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Chapter 6

Implementation details

To actuallyimplementthetechniquesdiscussedsofarin thisthesiscanbeadaunt-
ing taskwith lotsof potentialpitfallsandcaveats.In thischapterwepresentsome
implementationdetailswhichwasleft out in thepreviouschaptersfor clarity rea-
sons. We begin by giving the readeran overview of the gameenginewe have
incorporatedthetechniquesinto. Thenwepresentasolutionto theseeminglysim-
ple problemof samplinga screensizedtexturemapat coordinatescorresponding
to thecurrentpixel beingshadedin therendertarget. Finally, we presentthefull
CGsourcecodefor thepixelandvertex shadersrequiredto rasterizethepenumbra
wedgesinto theLI buffer.

6.1 The Peroxideengine

As oneof ourmaingoalswith this thesiswasto testtheapplicabilityof softshad-
ows in a truegameenvironment,we implementedour versionof thesoft shadow
algorithmwithin our gameengine- thePeroxideEngine. A full gameengineis a
very complex applicationanda detaileddescriptionof its componentsis beyond
thescopeof this thesis.Still it is importantto realizethattheaddedcomplexity of
a gameenginecomparedto a simpletestapplicationcansigni�cantly affect the
measuredperformanceof thetechniques.In thissection,wegiveashortoverview
of thedifferentcomponentsandfeaturesof ourgameengineto givethereaderan
understandingof theframework in which ourexperimentshavebeenconducted.

Platform and API independence
The PeroxideEnginehasbeendevelopedin a platform independentway, which
meansthatit canrunonmultipleplatformsusingseveraldifferentAPIsfor graph-
ics, soundandinput. At the moment,theenginerunson Linux, usingSDL and
OpenGLfor graphicsand input, aswell as underWindows wherethe DirectX
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framework is usedinstead.This crossplatform featureis achievedby wrapping
all API andplatformspeci�c codein 'drivers' thatexposeall functionalitythrough
a commoninterfaceto themaingameengine.A numberof suchdriversexist in
orderto provideaccessto thedifferentcategoriesof platformspeci�c code:

OS ProvidesOSspeci�c codefor timing functions,�le selectiondialogs,dialog
boxesetc.

GfxDri ver Providesanabstractionto everythinghaving to dowith graphics.Ex-
amplesof this includeswrappersfor vertex buffers, statemanagementon
thegraphicscard,drawing code,andshadermanagement.

InputDri ver Providesaninterfaceto themouseandkeyboard.Doesalsoimple-
mentfunctionalityto bindcallbackfunctionsto key or mouseevents.

SoundDriver Providesan interfaceto theplaybackof music�les, aswell asto
2d and3dsoundeffects.

NetDriver Provides an interface to networking code, which is requiredfor a
client/serverapplication.

Themaingameengineshouldcompileon any platformwith a C++ compiler
andSTL. The driversdescribedabove are the only componentswhich mustbe
reimplementedto supportanew platform.

This portability comesat a price though.Eachcall to codewithin oneof the
driversis wrapped,typically with a virtual function call, andis thusa bit more
expensive than a similar call in a platform speci�c application. In a properly
optimizedgameenginetherewill berelatively few calls to thedriversperframe,
but if for examplethegraphicsdriver is usedin a suboptimalway (lots of render
callsfor example)theabstractionlayercausesaperformancedrop.

The rendering framework
The PeroxideEngineusesan effect framework for rendering. Beforerendering
can take placean effect must be obtainedfrom the graphicsdriver. If the de-
siredeffectexistsin aversioncompatiblewith thedetectedhardwarethegraphics
driver returnsa pointerto theeffect. Theeffect providesbegin andendmethods
alongwith a mechanismfor settingparametersthatvarieswith theobjectsbeing
rendered.Any geometryrenderedbetweenthe 'begin' and'end' calls is drawn
asspeci�edby theeffect. If multiple passesover thegeometryarerequiredfor a
certainimplementationof aneffect, theeffect interfacewill specifyexactly how
many passesarerequiredand,if differentversionsof thegeometryareinvolved,
theeffectwill specifytheorderin which theapplicationshoulddraw them.
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Onebene�t of this systemis that multiple renderpathscanbe implemented
for variousgenerationsof graphicscards,eachusing the latestfeatureson the
hardwarefor thefastestandbestlookingimplementationof thedesiredeffect. For
examplein our enginewe have threedifferentimplementationsof a watereffect,
rangingfrom asimpletexturemappingto acomplex pixel shaderimplementation
thatonly runsoncardswith ps2.0or better. As betterhardwarebecomesavailable
it is easyto implementa new versionof the effect without makingany changes
in the actualgameengine. In addition, if a certaineffect doesnot exist for the
detectedhardwarethegameenginewill know this andwill skip therenderingof
thegeometrythatneedstheeffect.

Dynamic worlds
ThePeroxideEngineis built with large,fully dynamic,indoorandoutdoorenvi-
ronmentsin mind. As a result,no assumptionsaremadeaboutthe relationships
betweentheentitiesthatmake up theworld. Every objector light canfreely be
movedaround,withoutany signi�cant performancedecrease.Thisentailsthatall
shadows aredynamic.For outdoorscenes,a fully dynamiclandscapecomponent
hasbeenimplementedthat allows for real-timemodi�cations to shape,texture
andcolor amongotherthings. This allows for game-playeffectssuchascraters
thatappearif a bombis dropped,or permanentscorchmarkscausedby �res. A
dynamicday-cycle hasbeenimplementedwherea numberof key-framesspec-
ify propertiessuchastheambientlight, thesun's position,color andstrengthas
well asvariousfog settingsfor speci�c timesof theday. This dynamicworld is
ef�ciently managedthroughascenetreestructure,asdescribedin chapter5.

Script languages
Two customscripting languageshave beendevelopedfor the PeroxideEngine.
The�rst is calledPxdScriptandis aprogramminglanguagewith aC-likesyntax.
ThroughPxdScriptit is possibleto manipulatethegameengineandtheentitiesin
ascene.PxdScriptis typically usedto implementgame-playevents,AI scriptsfor
the NPCs1, andservices. Servicesarescriptsthat run continuouslyin the scene
for exampleto rotatethecogsof a machineor thewingsof a windmill. A virtual
machineexecutesPxdScriptprogramsandallow pseudo-parallelexecutionand
saving andloadingof runningprograms.The secondlanguagein the engineis
usedfor scriptingdialogswith the NPCsin the world througha very high-level
syntax.

1Non PlayerCharacters:characterscontrolledby theengineasopposedto thecharactercon-
trolled by theplayer.
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Additional features
In additionto the featuresmentionedabove, thePeroxideEngineincludesa few
componentsthat we will only mentionvery brie�y , as they have limited or no
relevanceto the topicscoveredin this thesis. Still, they arementionedhereas
they indirectly affect themeasuredperformanceof thesoft shadow algorithmby
imposingaconstantCPUoverheadeachframethatwouldnotbepresentin a test
application.

We have implementeda GUI framework, using accelerated3d graphics,in
which it is possibleto set up and to renderwindows with different 'skins' or
' looks'. We usethis GUI toolkit for someof our in-gamewindows aswell as
for someof our editing tools. We have also implementeda �e xible andhighly
parameterizedparticlesystemaswell asa systemfor cloth animation.ThePer-
oxideEnginealsoincludesananimationsystemthatallowsfor skeletalanimation
with up to four weightsper bone,anda systemfor mixing animationsallowing
for smoothblendsfrom oneanimationto another. All 3d modelsandanimations
areexportedfrom 3d studiomaxto our custom�le formatsusingourown export
plug-ins.

Theeditingof ourworldsis conductedin real-timeusingeditingfeaturesbuilt
into the gameengine. The editing canbe performedeitherof�ine on mapsthat
residelocally on the client machineor online throughan editing server called
NetEd. By connectingto NetEdit is possiblefor multiple usersto edit thesame
mapsimultaneously. Thisis usefulsinceourgamemaps,typically, aretoobig and
complex for asingleworld builderto handleby himself.Whentheclientconnects
to theNetEdserver thecurrentstateof themapis savedto abuffer andsentto the
connectingclient. After this point any changesa client might make to themapis
propagatedto all connectedclientsto keepthemsynchronized.

6.2 Calculating screen-space coordinates in a
shader

Certaingraphicalmulti-passalgorithms�rst rendersomesortof informationto a
screensizedtextureandthen,in alaterpass,they samplethetextureto retrievethe
informationstoredin the pixel correspondingto the onecurrentlybeingshaded
in the render-target. A goodexampleof this is thesoft shadow algorithmwhich
usesthistechniquetwice: thewedgepixel shaderretrievesdepthinformationfrom
theextra z-buffer, andthe light pixel shaderretrievesthe light intensityfrom the
LI-buffer.

To readfrom a texture, texturecoordinateshave to be available. So, reading
from a screensizedtexturepresentsuswith theproblemof �nding texturecoor-
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dinatesthat will lookup the texel correspondingto the pixel that is aboutto be
shaded2.

In order to calculatethesetexture coordinates,it is necessaryto look at the
viewport transformationwhich transformsavertex from projected-spaceontothe
screen. This is an additionalstepin the transformationprocessshown in �g-
ure A.4. The viewport transformationconverts the coordinatesfrom the range
[� 1::1] in projected-spaceto actualpixel coordinatesin the image,f.ex. to the
range[0::1023]� [0::767]. As it is possibleto mapprojected-spaceto any rectan-
gularareaof thescreen,the imageresolutiondoesnot necessarilyhave to match
thescreenresolution.

Whenthe viewport is equalto the full screensize,andhasfull depthrange,
theviewport transformationmatrixV is givenas(see[Mic] ViewportScaling):

V =
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whereW andH arethewidth andheightof thescreenin pixels.
Letpbeapointin projected-space(pxy z 2 [� 1::1]). The�nal screen-spacepo-

sitionp0(in pixels)is calculatedby applyingtheviewporttransformationmatrixto
thehomogeneousprojected-spacecoordinates.Theresultis �nally homogenized
into Cartesiancoordinatesby dividing with p0

w:
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For atransformationmatrixV asgivenin equation6.1,andfrom thede�nition
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Tosampleatexture,thesuppliedtexturecoordinatesaretransformedinto texel
coordinatest asfollows(see[Mic] Directly MappingTexelsto Pixels):

txy = cxy sxy + 0:5 (6.4)

2OpenGLfragmentprogramshavethesecoordinatesaccessibleasabuilt-in variablebut this is
not thecasefor DirectX pixel shaders.
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wherec is the texturecoordinatesands is thetexturesize. Sincewe want to
samplea screensizedtexturewe have thatsx = W andsy = H . To samplethe
correcttexel in thescreensizedtexturewe needto calculatetexturecoordinates
cxy sothatp0

xy = txy :

p0
xy = txy

= cxy sxy + 0:5

m
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Unfortunately, we have to evaluateequation6.5 in the pixel shaderfor each
pixel, ratherthanin thevertex shaderfor eachvertex. It is notpossibleto calculate
theequationin thevertex shaderbecauselinearly interpolatinga andb andthen
calculatinga=bis not the sameas interpolatinga=b. However it is possibleto
calculatethe expressionspx

2 and� py

2 in the vertex shaderand interpolatethese
values. Furthermore,the expressions0:5 � 1

2W and0:5 � 1
2H areboth constant

andcanthusbeuploadedto a constantregisterin thepixel shader. All thepixel
shadermustdo is to divide the interpolatedpx

2 and� py

2 by the interpolatedpw,
andthenaddtheconstantuv displacement.This is trivially vectorizableandcan
be implementedin two assemblerinstructions(onereciprocalandonemultiply-
and-addinstruction,see[Mic] Instructions- ps_2_0).

TheCGcodethatimplementstheabove is shown here:

1 // Vertex shader
2 struct appin {
3 float4 position : POSITION;
4 };
5

6 struct wedgeOut {
7 float4 position: POSITION;
8 float4 posData: TEXCOORD0;
9 };
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10

11 wedgeOut main(appin IN,
12 uniform float4x4 worldViewProj : register(c0))
13 {
14 wedgeOut OUT;
15 OUT.position = mul(IN.position, worldViewProj);
16

17 // The line below implements the per-vertex part of the lookup technique:
18 OUT.posData = OUT.position;
19 OUT.posData.y = -OUT.posScreenSpace.y;
20 OUT.posData.xy *= 0.5; return OUT;
21 }

1 // Pixel shader
2 struct appIn {
3 float4 position: POSITION;
4 float4 posData: TEXCOORD0;
5 };
6

7 float4 main(appIn IN, uniform float2 uvOffset : register(c0))
8 {
9 // Calculate screenspace UV coords

10 float4 temp = IN.posData;
11 float2 screenSpaceUV = (temp.xy/temp.w) + uvOffset;
12

13 // sample the screen-sized texture:
14 ....
15 }

6.3 The soft shadow algorithm

In this sectionwe show the applicationcodeissuingthe renderingcalls andthe
vertex and pixel shadersusedin the soft shadow algorithm. The algorithm is
describedin chapter4, and an overview of it is given in section4.1.6, so we
will not repeatthedescriptionhere,but we will clarify someof themoreobscure
detailsin theimplementation.

Application code

1 // the hard shadow part:
2 Effect* hardShadowEffect = gfxdriver->getEffect("hardWedge");
3 if (hardShadowEffect) {
4 // for all passes (=2):
5 for (int i = 0; i < hardShadowEffect->getNumPasses(); i++) {
6 hardShadowEffect->begin(i);
7

8 for (int j = 0; j < shadowVolumes.size(); j++) {
9 shadowVolumesj->renderHardShadow();

10 }
11 }
12

13

14 hardShadowEffect->end();
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15 }
16

17 // the wedges:
18 wedgeEffect = gfxdriver->getEffect("wedge");
19 if (wedgeEffect) {
20 // parameters for wedge
21 VECTORviewSpaceLightPos = gfxdriver->getViewMatrix() * light->GetPosition();
22 float lightRadius = light->getRadius();
23

24 gfxdriver->clear(COLOR(), CLEAR_STENCIL_ONLY);
25

26 // Draw all volumes:
27 for (int i = 0; i < shadowVolumes.size(); i++) {
28

29 // render each wedge:
30 for (int j = 0; j < shadowVolumesi->getNumWedges(); j++) {
31

32 // Inner wedge half
33 wedgeEffect->begin(0);
34 shadowVolumesi->renderInnerWedgeNr(j);
35 wedgeEffect->begin(1);
36 wedgeEffect->setParameter(EP_LIGHT_POSITION, viewSpaceLightPos/lightRadius);
37

38 wedgeEffect->setParameter(EP_LIGHT_RADIUS, VECTOR4D(lightRadius,0,0,0));
39 shadowVolumesi->renderInnerWedgeNr(j);
40

41 // Outer wedge half
42 wedgeEffect->begin(2);
43 shadowVolumesi->renderOuterWedgeNr(j);
44 wedgeEffect->begin(3);
45 wedgeEffect->setParameter(EP_LIGHT_POSITION, viewSpaceLightPos/lightRadius);
46 wedgeEffect->setParameter(EP_LIGHT_RADIUS, VECTOR4D(lightRadius,0,0,0));
47 shadowVolumesi->renderOuterWedgeNr(j);
48 }
49

50 }
51 wedgeEffect->end();
52 }

Theapplicationcodeusestheeffectframework describedin section6.1,which
is why thestatesettingsarenot visible in thecodebelow. Theshadow volumes
arerepresentedby C++ objectswith a numberof conveniencemethods.F.ex. it
is possibleto get thenumberof wedgesandto renderthe innerandouterhalf of
eachwedgeseparately.

The applicationcoderenderstwo things: the hardshadow andthe wedges.
The wedgerendering,(lines 33–47),shows that four rendercalls are usedper
wedge,two for eachwedgehalf. The two rendercalls for eachhalf accomplish
the culling of fragmentsthat arenot in the penumbraarea,as it is describedin
section4.1.3.

Wedgevertex shader

1 struct appin {
2 float4 position : POSITION;
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3 float4 edgePoint0 : TEXCOORD0;
4 float4 edgePoint1 : TEXCOORD1;
5 };
6

7 struct wedgeOut {
8 float4 position: POSITION;
9 float4 posData: TEXCOORD0;

10 float3 posViewSpace : TEXCOORD1;
11 float3 edgePoint0 : TEXCOORD2;
12 float3 edgePoint1 : TEXCOORD3;
13 float r3DepthViewSpace : TEXCOORD4;
14 };
15

16 wedgeOut main(appin IN, uniform float4x4 worldViewProj : register(c0),
17 uniform float4x4 worldView : register(c4),
18 uniform float rcpLightRadius : register(c10)) {
19

20 wedgeOut OUT;
21 OUT.position = mul(IN.position, worldViewProj);
22

23 // Calculate screenspace position
24 OUT.posData = OUT.position;
25 OUT.posData.y = -OUT.posData.y;
26 OUT.posData.xy *= 0.5;
27

28 OUT.posViewSpace = mul(IN.position, worldView).xyz;
29 OUT.r3DepthViewSpace = OUT.posViewSpace.z;
30 OUT.posViewSpace.xyz *= rcpLightRadius;
31

32 OUT.edgePoint0 = mul(IN.edgePoint0, worldView).xyz * rcpLightRadius;
33 OUT.edgePoint1 = mul(IN.edgePoint1, worldView).xyz * rcpLightRadius;
34

35 return OUT;
36 }

The vertex and pixel shadersusethe techniquedescribedin section6.2 to
calculatethescreen-spacecoordinates,which is seenin vertex shaderlines24–26
andpixel shaderline 19. The edgepointsarepassedto the pixel shadervia the
vertex data(in texturecoordinates0 and1, line 3 and4). Sincethe verticesare
not sharedbetweenwedges,thesedataareconstantfor all trianglesinvolvedin a
wedge,which is why thereis no risk thatinterpolationwill changethesevalues.

ThercpLightRadius variableis thereciprocalvalueof theradiusof the
currentlight, andis usedto transformtheview-spacepositionandtheedgepoint
0 and1, (seelines 30–33),into unit spherespaceasdescribedin section4.2.1.
We usethe reciprocalvaluebecauseit allows us to usemultiplication insteadof
division,saving anassemblyinstruction.

Wedgepixel shader

1 struct appIn {
2 float4 position: POSITION;
3 float4 posData: TEXCOORD0;
4 float3 posViewSpace : TEXCOORD1;
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5 float3 edgePoint0 : TEXCOORD2;
6 float3 edgePoint1 : TEXCOORD3;
7 float r3DepthViewSpace : TEXCOORD4;
8 };
9

10 float4 main(appIn IN, uniform sampler2D depthMap : register(s0),
11 uniform sampler3D visMapSameSide : register(s1),
12 uniform sampler3D visMapDiffSide : register(s2),
13 uniform float3 lightPos : register(c0),
14 uniform float2 uvOffset : register(c3),
15 uniform float rcpLightRadius : register(c4),
16 uniform float4 resultModulator: register(c5)) : COLOR{
17

18 // Calculate screenspace UV coords
19 float2 screenSpaceUV = (IN.posData.xy/IN.posData.w) + uvOffset;
20

21 // Sample depth value
22 float depthValue = tex2D(depthMap, screenSpaceUV).r;
23

24 // Find position in view-space of geometry behind this wedge pixel
25 float3 geometryPos = IN.posViewSpace * (depthValue / IN.r3DepthViewSpace);
26

27 // Find plane through edge and geometryPos
28 float3 geoPlaneNormal = normalize(cross(IN.edgePoint0 - geometryPos, IN.edgePoint1 - geometryPos));
29

30 // distance from plane to lightPos (if within range -1,1 it intersects the light):
31 float d0 = dot(lightPos - IN.edgePoint0, geoPlaneNormal);
32

33 // Project lightPos to geoPlane:
34 float3 basePoint = lightPos - d0 * geoPlaneNormal;
35

36 // Find normal of lightPlane
37 float3 lightPlaneNormal = normalize(geometryPos - basePoint);
38

39 // Project e0 and e1 onto lightPlane
40 float distToPlane = dot(IN.edgePoint0 - basePoint, lightPlaneNormal);
41 float3 edgePoint0Proj = IN.edgePoint0 - distToPlane * lightPlaneNormal;
42

43 distToPlane = dot(IN.edgePoint1 - basePoint, lightPlaneNormal);
44 float3 edgePoint1Proj = IN.edgePoint1 - distToPlane * lightPlaneNormal;
45

46 // Determine if the projected points are on the same side of base point or not.
47 float3 baseToE0p = edgePoint0Proj - basePoint;
48 float3 baseToE1p = edgePoint1Proj - basePoint;
49

50 // Calculate distance from base point to the two projected points.
51 float d1 = length(baseToE0p);
52 float d2 = length(baseToE1p);
53

54 // The look-up texture coordinate:
55 float3 uvw = float3(abs(d0), d1, d2);
56

57 // Sample the correct map
58 float coverage;
59 if (dot(baseToE0p, baseToE1p) > 0) {
60 coverage = tex3D(visMapSameSide, uvw).r;
61 }
62 else {
63 coverage = tex3D(visMapDiffSide, uvw).r;
64 }
65

66 // Calculate the changes to make according to coverage.

83



67 float4 result = float4(0,coverage,0,coverage) * resultModulator;
68

69 return result;
70 }

Conceptuallythepixel shadercanbedividedinto threeparts: �nding thege-
ometry(or fragment)position(until line 25),calculatingthecoveragevaluebased
on thegeometryposition(until line 65),andusingthecoveragevalueto give the
desiredoutput. The geometrypositionis found by usingthe pixel positionand
readingthedepthvaluefrom thedepthbuffer asdescribedin section4.1.4.

Calculatingthe coveragevalueis the mostexpensive part. A high-level de-
scription of the computationis found in section4.1.4, and here we will de-
scribeit in further detail. First, we �nd the geoPlane,or ratherthe normal to
it (geoPlaneNormal at line 28). With this,wecan�nd d0: thesigneddistance
from geoPlaneto thelight source.Wecanthenused0 to �nd thebasePointby pro-
jectingthelight sourceontothegeoPlane(line 34). Thenormalto thelightPlane
cannow befoundasthenormalizedvectorfrom thebasePointto thegeometrypo-
sition (line 37). We thenprojecttheedgepointsontothelightPlaneandform the
two vectorsfrom thebasepointto eachof theprojectededgepoints(baseToE0p
andbaseToE1p ). Thesetwo vectorsareusedfor �nding d1 andd2 aswell asfor
calculatingwhethertheprojectedpointsareon thesameor differentsidesof the
basePoint.Theprojectededgepointsareon thesamesideif thedot productbe-
tweenthetwo vectorsaregreaterthanzero(line 59). Knowing this,andknowing
thevaluesof d0, d1 andd2 we cansamplethecorrectfunctionmapto lookupthe
coveragevalue.

Usingthecoveragevaluetogivethedesiredoutputis verysimple.Wewantthe
coveragevalueoutputtedto eitherthey or thew channel,dependingon whether
thefragmentis in theinneror outerpenumbraregion. Sincethisversionof thesoft
shadow algorithmusesthe split wedgegeometrywe know wherethe fragments
are locatedwithout having to make any calculations. Consequentlywe could
have madetwo slightly differentversionsof the pixel shader;one that outputs
the coveragevalue to the y andone that outputsto the w channel. Insteadwe
usea little trick. TheresultModulator variablecontainseither(0; 1; 0; 0) or
(0; 0; 0; 1) andline 67 thereforemasksout thecorrectoutputchannel.This trick
costsanextrapixelshaderinstructionbutallowsustousethesameshaderfor both
halves,thussaving theoverheadof switchingshadersandallowing usto maintain
onepixel shaderinsteadof two.

6.4 The per-loop soft shadow algorithm

This sectionshows someof thecodefor our implementationof theper-loop soft
shadow algorithmdescribedin section4.4. Someof the codeis identicalto the
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codeof theoriginal algorithmandwe will only discussthecodethat is different
here.As thevertex shaderin thisversionis identicalto theoriginal it is notshown.

Per-loop application code

1 Effect* wedgeEffect = gfxdriver->getEffect("wedge");
2

3 if (wedgeEffect) {
4 gfxdriver->setRenderTarget("coverageTexture" );
5 gfxdriver->clear(COLOR(0,0,0,0), CLEAR_COLOR_ONLY);
6

7 // For every shadow volume...
8 for (int j = 0; j < shadowVolumes.size(); j++) {
9 ShadowVolume* volume = shadowVolumesj;

10

11 // for every silhouette loop...
12 for (int loopNum = 0; loopNum < volume->getNumLoops(); loopNum++) {
13

14 // Clear softDataTexture
15 gfxdriver->setRenderTarget("softDataTexture");
16 gfxdriver->clear(COLOR(0,0,0,0), CLEAR_COLOR_ONLY);
17

18 // Hardshadow
19 wedgeEffect->begin(0);
20 volume->renderHardLoopNr(loopNum);
21 wedgeEffect->begin(1);
22 volume->renderHardLoopNr(loopNum);
23

24 VECTORviewSpaceLightPos = gfxdriver->getViewMatrix() * light->GetPosition();
25 float lightRadius = light->getRadius();
26

27 // Stencil out the penumbra area
28 wedgeEffect->begin(2);
29 volume->renderWedgeLoopNr(loopNum);
30

31 // Run PS in the stenciled out area calculating loop-local coverage into softDataTexture
32 wedgeEffect->begin(3);
33 wedgeEffect->setParameter(EP_LIGHT_POSITION, viewSpaceLightPos/lightRadius);
34 wedgeEffect->setParameter(EP_LIGHT_RADIUS, VECTOR4D(lightRadius,0,0,0));
35 volume->renderWedgeLoopNr(loopNum);
36

37 // Transfer the calculated value to coverageTexture
38 wedgeEffect->begin(4);
39

40 wedgeEffect->end();
41 }
42 }
43 }

The application code is a lot different from the original algorithm since
we renderper silhouetteloop; the for-loop in line 12 accomplishesthis. The
shadow volume objectsusedhereare also different from the onesin the orig-
inal algorithm as they must supportper-loop operationsinsteadof per-wedge
operations. Also note that the coveragetransferstep is accomplishedin the
wedgeEffect->begin(5) call in line 38whichmakestheappropriaterender
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call (ascreen-sizedquad).

Per-loop wedgepixel shader

1 / Pixel shader for wedges
2 struct appIn {
3 float4 position: POSITION;
4 float4 posData: TEXCOORD0;
5 float3 posViewSpace : TEXCOORD1;
6 float3 edgePoint0 : TEXCOORD2;
7 float3 edgePoint1 : TEXCOORD3;
8 float r3DepthViewSpace : TEXCOORD4;
9 };

10

11 float4 main(appIn IN, uniform sampler2D depthMap : register(s0),
12 uniform sampler3D visMapSameSide : register(s1),
13 uniform sampler3D visMapDiffSide : register(s2),
14 uniform float3 lightPos : register(c0),
15 uniform float2 uvOffset : register(c1)) : COLOR{
16

17 // Calculate uv coords for screen position
18 float2 screenSpaceUV = (IN.posData.xy/IN.posData.w) + uvOffset;
19

20 float coverage = 0;
21

22 // Sample depth value
23 float depthValue = tex2D(depthMap, screenSpaceUV).r;
24

25 // Find position in view-space of geometry behind this wedge pixel
26 float3 geometryPos = IN.posViewSpace * (depthValue / IN.r3DepthViewSpace);
27

28 // Find plane through edge and geometryPos
29 float3 geoPlaneNormal = normalize(cross(IN.edgePoint0 - geometryPos, IN.edgePoint1 - geometryPos));
30

31 // Does plane intersect with light sphere?
32 // distance from plane to lightPos:
33 float distLightToGeoPlane = dot(lightPos - IN.edgePoint0, geoPlaneNormal);
34

35 // Project lightPos to geoPlane:
36 float3 basePoint = lightPos - distLightToGeoPlane * geoPlaneNormal;
37

38 // Find normal of lightPlane
39 float3 lightPlaneNormal = normalize(geometryPos - basePoint);
40

41 // Project e0 and e1 onto lightPlane
42 float distToPlane = dot(IN.edgePoint0 - basePoint, lightPlaneNormal);
43 float3 edgePoint0Proj = IN.edgePoint0 - distToPlane * lightPlaneNormal;
44 distToPlane = dot(IN.edgePoint1 - basePoint, lightPlaneNormal);
45 float3 edgePoint1Proj = IN.edgePoint1 - distToPlane * lightPlaneNormal;
46

47 float3 baseToE0 = edgePoint0Proj - basePoint;
48 float3 baseToE1 = edgePoint1Proj - basePoint;
49

50 float dotProd = dot(baseToE0, baseToE1);
51 float distToE0 = length(baseToE0);
52 float distToE1 = length(baseToE1);
53

54 float3 uvw = float3(abs(distLightToGeoPlane), distToE0, distToE1);
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55 if (dotProd > 0) {
56 coverage = tex3D(visMapSameSide, uvw).r;
57 }
58 else {
59 coverage = tex3D(visMapDiffSide, uvw).r;
60 }
61

62

63 // Use coverage value calculated
64 float4 result;
65

66 // Let distLightToGeoPlane decide whether we are in inner or outer region
67 if (distLightToGeoPlane > 0) {
68 // Outer region - add coverage and tell that we are outside
69 result = float4(0,1,coverage,0);
70 }
71 else {
72 // Inner region - subtract coverage
73 result = float4(0,0,0,coverage);
74 }
75

76 return result;
77 }

Thepixel shaderis almostidenticalto theoriginal algorithm,theonly differ-
enceis how thecalculatedcoveragevalueis used,(seeline 67). If thefragmentis
in theouterpenumbraregion,weaddthecoveragevalueto thez channelandadd
oneto they channel.They channelis latertestedby thecoveragetransfershader
to determinewhetherweareinsideor outsidehardshadow. Themethodfor doing
this is describedin section4.4. If thefragmentis in the innerregion, we addthe
coveragevalueto thew channel.

The coverageTransfer pixel shader

1 struct appin {
2 float4 position : POSITION;
3 float2 texCoords : TEXCOORD0;
4 };
5

6 float4 main(appin IN, uniform sampler2D softDataMap : register(s0)) : COLOR
7 {
8 float4 softDataValues = tex2D(softDataMap, IN.texCoords);
9

10 float coverage = softDataValues.z - softDataValues.w;
11

12 if (coverage == 0)
13 coverage = softDataValues.x;
14 else if (softDataValues.y == 0) {
15 // Inside hardshadow
16 coverage += 1;
17 }
18

19 coverage = saturate(coverage);
20
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21 return float4(coverage, 0, 0, 0);
22 }

ThecoverageTransferpixel shadercalculatestheLI valuefor a singlesilhou-
etteloop. TheLI valueis thedifferencebetweenthepositiveandnegativecover-
agecontributions(thez andw channelsrespectively, seeline 10). If theLI value
is zero,we assumethatwe areoutsidethepenumbraareaandwe usetheumbra
(or hardshadow) valuewhich is foundin thex channel(line 13). If theLI value
is differentfrom zerowe areinsidethepenumbraareaandthey channeltells us
whetheror not we arein hardshadow asdescribedabove. Whenin hardshadow,
weaddoneto theLI value(line 16).

6.5 Vertex shadershadow volumes

Herewe show thevertex shadercodewhich extrudestheVS shadow volumesas
describedin section3.3.3.

1 struct appin {
2 float4 position : POSITION;
3 float4 normal : NORMAL;
4 };
5

6 struct vertout {
7 float4 position : POSITION;
8 };
9

10 vertout main(appin IN,
11 uniform float4x4 worldView : register(c4),
12 uniform float4x4 proj : register(c8),
13

14 uniform float4 viewSpaceLightPos : register(c12),
15 uniform float lightRange : register(c13))
16 {
17 // Calculate view-space position and normal
18 float4 viewSpacePos = mul(IN.position, worldView);
19 float3 viewSpaceNormal = mul(IN.normal.xyz, (float3x3)worldView);
20

21 // Calculate extrusion vector
22 float4 extrusion = viewSpacePos - viewSpaceLightPos;
23 extrusion.w = 0;
24 float distToPoint = length(extrusion);
25 extrusion = normalize(extrusion) * max(0, lightRange-distToPoint);
26

27 // Calculate final position:
28 float dotProd = dot(viewSpaceNormal, extrusion.xyz);
29 float4 finalViewSpacePos = (dotProd<0) ? viewSpacePos : viewSpacePos + extrusion;
30

31 // Project final view-space pos
32 vertout OUT;
33 OUT.position = mul(finalViewSpacePos, proj);
34 return OUT;
35 }
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Lines 22–25calculatethe extrusionvector for the vertex. Line 29 chooses
betweenletting the vertex stay at its normal position or extruding it basedon
whetherit is front or backfacingto thelight. Notethattheextrusionis performed
in view-spaceandtheprojectionmatrix is appliedafterwards.
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Chapter 7

Conclusion

In this thesiswe have investigatedthe theoreticalandpracticalaspectsof both
hardandsoft real-timeshadows,andwehave implementedthemin a full-�edged
moderngameengine.In this chapter, we presenta compactsummaryof our key
resultsandsuggestfuture work that would speedup the presentedsoft shadow
algorithmsaswell asexpandtheclassof volumelight sourcesthatcanbeused.

7.1 Results

We have implementedthe soft shadow algorithmsuggestedby Akenine-Möller
andAssarssonin [AMA02], [AAM03] and[ADMAM03 ] anddescribedin chapter
4. The algorithmcalculatespenumbrawedgesfor eachsilhouetteedgefrom a
givenlight source.Thepenumbrawedgesarerasterizedinto theLI buffer usinga
pixel shader. TheLI buffer holdsa visibility factorfor eachpixel on thescreen,
andthis factoris usedin a subsequentpassto modulatethecontribution from the
light. Thepenumbrawedgealgorithmimplementsageneralsolutionfor real-time
soft shadows in simplesceneswith arbitraryshadow casters.

Assumingsphericallight sourceswehavedevelopedanovel techniquefor cal-
culatingthecoveragevalueasdescribedin section4.2. Thecoveragecalculation
is themosttimeconsumingpartof thepixel shader, but with ouroptimizationthe
lengthof thepixel shaderis reducedfrom 63 to 43 instructions.Furthermore,the
amountof texture memoryrequiredfor look-up tablesis reducedfrom 2MB to
128KB.

Wehaveidenti�ed severalproblemsin thealgorithm,themostimportantbeing
thateachwedgemustberenderedseperately. This is a consequenceof theneed
to split eachwedgein halvesas describedin section4.3.3. The large amount
of rendercalls resultsin a severeCPU overheadthat becomesthe bottleneckin
the algorithm for complex scenes.To overcomethe CPU bottleneck,we have
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developeda novel versionof thealgorithmthat is ableto renderall wedgesin a
silhouetteloop asa singlebatch. Theper-loop algorithmis describedin section
4.4.Asdescribedin section4.5,thisversionof thealgorithmisGPUlimited rather
thanCPUlimited andasGPUscurrentlyevolvefasterthanCPUs,webelievethis
is aninterestingtrait. In its currentform theper-loopalgorithmunfortunatelyonly
allowsshadow castersthatproduceconvex silhouetteloops.

We have implementedboth the original and our per-loop algorithm in our
gameengine,andwe have testedthe techniqueson realgamescenesasdemon-
stratedin screenshotsB.1 to B.5. The imagesrenderat interactive, but not real-
time, framerates1. To ef�ciently managethelargeamountof shadow volumesin
thegamesceneswe have developedseveralculling techniqueswhich ensurethat
only visible volumesareprocessed,asit is describedin chapter5.

7.2 Futur ework

From our work with the soft shadow algorithmwe concludethat it is not ready
for generalusein its currentform. Furtherresearchis necessarybeforeit canbe
appliedto gamesthewaystencilshadowsaretoday.

Performance
The most importantcontribution to the algorithmwould be to increaseits per-
formance. In section4.3 we identi�ed a list of problemswith the soft shadow
algorithms,someof which hadto do with the limited blendingfunctionality of
currenthardware. It is possiblethat new generationsof graphicshardwarewill
allow customblendingoperationsfrom within pixel shadersandif so,work can
bedoneto optimizethecalculationsperformedontheGPU.But sincetheoriginal
algorithmis CPUlimited thiswill not solve theperformanceproblems.

Before our per-loop algorithm can be put to generaluseit must be able to
handlearbitraryshadow casters.At this time we have no ideasfor a solutionto
thisproblem.

We have not tried to optimizeour per-loop algorithm,but thereare several
waysto reducethenumberof thecoveragetransferpassesandclearoperations.
Onesuchway is to split up thechannelusedfor hardshadow data. This should
makeit possibleto rendertwo loopsfor everycoveragetransferpass,andit would
effectively halve thenumberof clearoperationsaswell asthenumberof execu-
tionsof thecoveragetransferpixelshader. Furthermore,thecoveragetransferpass
alwaysrendersa screen-sizedquad,evenif theaffectedareais just a small frac-
tion of thescreen.This is wasteful,both in regardto thepixel shaderexecutions

1Between1.5and5 FPSin a 640� 480resolution.
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andthebandwidthusage.

Ellipsoidal light sources
Anothervaluablecontributionto thealgorithmwouldbeto extendournew cover-
agecalculationtechniqueto otherlight shapesthanspheres.Akenine-Möllerand
Assarssonhaveimplementedthreevariantsof theoriginalalgorithmwhichallows
themto castshadowsfrom bothspherical,rectangularandeventexturedrectangu-
lar light sources[AAM03]. Our optimizedcoveragecalculationtechniqueis only
valid for sphericallight sourceswhichshouldnotbeaproblemin mostgameset-
tings. However it is possible,to extendour algorithmto handleellipsoidallight
sources. In section4.2.1 we describehow to transformgeometryinto a space
wherethelight sourceis aunit spherethroughtheuseof achangeof basismatrix.
For sphericallight sourceswe show how this canbereducedto a simpledivision
by a scalar. For axis-alignedellipsoidsa similar reductioninto a division by a
vectoris possiblebut for generallyorientedellipsoidstheentireCBM mustbeap-
plied. Thecostof applyingafull matrix to apoint is four pixel shaderinstructions
whereasdivisionby ascalaror avectoris possiblein one.

Ellipsoidsprovide a goodapproximationto many shapes,andwe would with
this additionbeableto handlesoft shadows from for examplestrip lights. Strip
lights arecommonin many environmentsandarequitepoorly approximatedby
spheres.
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Appendix A

Working with 3d graphics

A.1 Terminology

In thissectionwebrie�y introducesomeof themostcommonconceptsandterms
usedin 3d computergraphics.An understandingof theseconceptsis crucial for
readingthis thesis.

Color buffer
At themostbasiclevel, imagesin computergraphicsconsistof anarrayof colors
- onecolor for eachpixel in the image.Eachcolor is typically representedusing
threecolor channels,R, G andB, describingthe intensityof eachof the main
color components:red,greenandblue. Optionally, thecolor canalsocontainan
alphachannelthatcanbeusedfor auxiliary informationsuchasthetransparency
valueof thepixel. 8 bits aretypically usedfor eachchannel,makinga color 32
bits in size: anoptimalsizefor a CPUasit matchesthecacheboundariesnicely
andmakes it possibleto storean entirecolor value into memorywith a single
assemblyinstruction. As a result,32 bits areusuallyused- evenwhenanalpha
channelis not needed.In sucha case,eachcolor simply containsa paddingbyte
wherethe alphainformationwould normally be stored. The arrayof colors is
usuallyreferredto asthecolor buffer.

Depth buffer
For 2d graphicsa color buffer is really all we need,but in 3d it is possiblefor
several surfacesto be projectedand renderedinto the samepixels in the color
buffer. Thenit is necessaryto keeptrack of the spatialorderof all suchpixels
so only the front mostpixel is shown1. As it is impracticalto keeptrack of the

1This is known asthehiddensurfaceremoval problem
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spatialorderof all pixelsin real-timerenderinga depthbuffer or z-buffer is used
to keeptrackof thecurrentdepthof all pixelsin thecolorbuffer. Soadepthbuffer
is simply a buffer (with thesamewidth andheightasthecolor buffer) thatstores
thedepthvalueof eachpixel currentlyin thecolor buffer. Whenever a new pixel
is aboutto berenderedinto thecolorbuffer, its depthvalueis �rst comparedwith
the z-buffer - this is often referredto asthe z-test. Only if the new pixel hasa
depthvaluecloserto theviewer2 thanthecurrentoneis it allowedto updatethe
color anddepthbuffer. Sincea fairly high precisionis neededto sort the pixels
correctly, 24or 32 bitsaretypically usedfor eachpixel in thedepthbuffer.

Stencil buffer
Currentgraphicscardsarealsoequippedwith a so-calledstencilbuffer. A sten-
cil buffer canbethoughtof asa kind of maskthatcanbesetup to de�ne which
regionsof the color buffer that canbe renderedto. If f.ex. the stencilbuffer is
clearedto zeroanda circle is drawn in themiddleof it, settingthestencilvalue
to onefor all pixelsthatthecircle covers,thenthestencilbuffer canlaterbecon-
�gured only to allow draws in thecolor buffer in thoseregionswherethestencil
valueis one. In effect, we have maskedout a circular region of thecolor buffer.
Typically 8 bits areusedperpixel in thestencilbuffer, andfor performancerea-
sonsit is usuallycoupledwith a24bit depthbuffer, resultingin a32bit combined
depth-stencilbuffer.

As the stencilbuffer is a very importanttool for our shadow rendering,we
will cover its usea bit morein depthin the following. Therearequitea few pa-
rametersinvolvedin settingup thestencilbuffer andtwo of themarethestencil
referencevalueandthe stencilcompare function. The stencil referencevalueis
a constant8-bit value that is uploadedto the graphicscard,and for eachpixel
thecorrespondingvaluein thestencilbuffer is comparedwith it usingthespeci-
�ed comparefunction. The resultof this comparisonis a Booleanvalue. If this
Booleanis truethenwesaythatthepixel passesthestenciltest- otherwiseit fails
the stencil test. As explainedabove it is only if the pixel passesthe stencil test
thatit is allowedto bedrawn into thecolorbuffer. So,giventhatwehavealready
placedsomevaluesinto thestencilbuffer somehow, thosetwo parametersareall
that is neededto usethestencilbuffer for maskingout certainareasin theframe
buffer. In thecircleexampleabovewewouldsetthestencilreferencevalueto '1'
andthecomparefunctionto 'equal'.

It is not possibleto rendervaluesdirectly into the stencilbuffer though. Its
valuesaremodi�ed with certainstenciloperationsthathappenwhenany of three
differentconditionsare met. Thesethreeconditionsare: when the stencil test

2Actually it is possiblefor theapplicationprogrammerto de�ne thez-testto besomethingelse
thantheusual' less-or-equal'but this wastheoriginal ideabehindthez-buffer.
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passes;whenthestenciltestfails; andwhenthestenciltestpassesbut thez-test
fails. For eachof thethreecases:PASS,FAIL andZFAIL astenciloperationmust
bespeci�ed.Theexactlist of availablestenciloperationsdependsonthegraphics
cardbut thebasiconesavailableonall cardsare:

� KEEP- leave thestencilvalueuntouched.

� ZERO - setthestencilvalueto 0.

� ONE - setthestencilvalueto 1.

� INCR - increasethestencilvalueby 1.

� DECR- decreasethestencilvalueby 1.

� REPLACE - replacethestencilvaluewith thestencilreferencevalue.

So, to set the valuesof the stencilbuffer the graphicscard is typically con-
�gured not to draw in thecolor buffer. Thenpiecesof geometryarerenderedas
normal,with thestencilbuffer turnedon andthestencilcomparefunctionsetto
'always'. As a result,all renderedpixelswill passthestenciltestjust aslong as
they passthez-test.

Homogeneouscoordinates
The basicgeometricaltransformationsusedin 3d graphicsarerotation,scaling
andtranslation.Both scalingandrotationin 3d canbe expressedthrougha 3x3
matrix, and in order to scaleor rotatea 3d vector it is simply multiplied with
thecorrespondingmatrix. Translation,on theotherhand,is achievedby adding
the translationvector to the sourcevector. This inconsistency in how to apply
transformationsis unfortunate- we would like to be ableto treatall threekinds
of transformationsin a consistentway, namelythrougha vector/matrixmultipli-
cation. To overcomethis problemmostgraphicsAPIs, including both DirectX
andOpenGL,work with so-calledhomogeneouscoordinates. In homogeneous
coordinatesanextra 'w' componentis addedto thevector. In 3d this meansex-
pandingeachvectorfrom threeto four vectorcomponents:x, y, z andw. Thusthe
transformationmatricesmustalsobe expandedfrom 3x3 to 4x4 if they arestill
to bemultiplied to thevectors.As explainedin [FvDFH90] chapter5, usingho-
mogeneouscoordinatesand4x4 transformationmatriceswe arenow ableto also
implementtranslationsasmatrix multiplications.Themainbene�t of this is that
wenow canconcatenateawholestringof transformationsinto asingle4x4matrix
andapplyall thetranslationsto a vectorsimply by multiplying it with this single
combinedtransformationmatrix. This is veryusefulin a3d graphicspipeline.
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If wehomogenizeapointgivenin homogeneouscoordinatesby dividing each
componentwith thew component,we getavectorof theform (x; y; z; 1) andwe
call the point (x; y; z) for the Cartesiancoordinatesof the homogeneouspoint.
The fact thatwe're usinghomogeneouscoordinates,canbe fairly transparentto
the userof a 3d API suchasOpenGLor DirectX sincewe can just de�ne our
3d vectorsasusualandhave theAPI assumea default w valueof 1. On theother
hand,if weexplicitly specifyaw valuedifferentfrom 1,or avectoris transformed
by thegraphicspipelinedescribedbelow so that it getsa w valuedifferentfrom
1, thentheAPI will homogenizethecoordinatebeforerasterisingthe trianglein
which it is used. As onecannotdivide by zero,homogeneouspointswith a w
valueof zerocannotbe homogenized.However, as the valuedivergestowards
in�nity we de�ne all suchpointsto be in�nitely far away, displacedalonga ray
originatingat(0; 0; 0) andwith directionvector(x; y; z). As aresultit is common
to representdirectionvectorsashomogeneouscoordinateswith w=0 while point
vectorsusesthestandardrepresentationwith w=1.

Fragmentsvs. pixels
Thereis a subtlebut importantdifferencebetweenfragmentsandpixels. A frag-
mentis theprojectionof a smallpartof a speci�c triangleto a certaincoordinate
on the screenwhile a pixel is the smallestunit in the image. The �nal color of
eachpixel is a combinationof thecolorsof all fragmentsthatareprojectedonto
thepixel. Sometimestheprojectionof a fragmentontoa pixel simply overwrites
its currentcolorbut it is alsopossibleto havethegraphicscardblendthenew frag-
ment's color with thecurrentcolor of thepixel instead.This techniqueis called
framebuffer blending,andvarioussettingson thegraphicscardexist thatallow
theapplicationprogrammerto specifyhow this blendingshouldbedone.Exam-
plesof differentblendmodesareadditive blendingandvariousforms of alpha
blending. In additive blendingthe color of eachnew fragmentis simply added
to the currentcolor of the pixel, while in alphabasedblendingmodesthealpha
channelof thenew fragmentis usedto decidetheweightingof a blendbetween
thenew andcurrentcolorof thepixel.

A.2 The graphicspipeline

Current3dcardsand3dAPIssuchasDirectX andOpenGLrepresentthegeome-
try they renderasmeshesof triangles.A trianglemeshis built from a collection
of vertices(points)in 3d andis de�ned by edgesthatconnectthoseverticesinto
triangles.In this sectionwe cover thevariousspacesin which thecoordinatesfor
such3d meshescanbe de�ned. We alsogive an overview of the pipeline that
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convertsthe geometryfrom its meshrepresentationto its �nal representationin
thecolorbuffer aspixels.

Transformations
Eachmeshis typically de�ned in its own local coordinatespacecalledobject-
spaceor sometimesmodel-space. In otherwords,thecoordinatesof thevertices
arede�ned relative to a local basisthat canbe orientedin a way that makes it
practicalto de�ne andedit themesh.In thecaseof thebox shown in �gure A.1,
a local coordinatespaceis chosenso that thesidesof thebox areparallelto the
coordinateaxes,andconsequentlyit is easyto de�ne thecoordinatesof themesh.

(2,2,2)

(2,0,2)

X

Y

Z

(0,0,0) (2,0,0)

(2,2,0)

(0,2,2)

(0,2,0)

(0,0,2)

FigureA.1: Wire-framebox in object-space

A 3d scenegenerallyconsistsof a numberof meshesplacedinto a common
spacecalled world-space. To transforma meshfrom object-spaceinto world-
space,a matrix calledthe world matrix is appliedto all its vertices. The world
matrix rotates,scalesandtranslatestheverticesinto new coordinates,relative to
the commonbasis. By associatingmultiple differentworld matricesto a mesh,
it canbe renderedmultiple timesinto differentpositionsandorientationsin the
scene.Eachtime anew instanceof themeshis saidto beput into theworld.

Theworld-spaceis in�nitely largeandonly a small fractionof it canbevisu-
alizedonacomputerscreen.To de�ne whatis seen,acamerais put into theworld
with a certainposition,orientationandFOV3.

The camerade�nes a third coordinatespacecalled camera-spaceor view-
spacewith origin at the cameraposition: a z-axisalongthe viewing direction;

3FOV is shortfor Field Of View andde�neshow wide the�eld of vision is. Typically, a FOV
of 90degreesis used,eventhoughthehumaneyehasamuchwider �eld of view.
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a y-axis alongthe 'up' directionof the camera;andan x-axis alongthe 'right'
directionof thecamera.From thesethreebasisvectorsit is possibleto createa
view matrix which hasthe effect of transforminga point from world-spaceinto
view-space.The view matrix is appliedto all verticesafter they have beenput
into world-spaceby theirworld matrices.

The view-spaceis still an in�nite 3d spaceand thus, like the world space,
only a small fraction of it canbe visualizedon a computerscreen.The camera
position, along with the FOV, de�nes an in�nitely deeppyramid with a top at
the camerapositionandspreadingout, away from the camera,alongthe z-axis
in theview-space.This pyramidis intersectedby two planes,bothorthogonalto
theview direction,calledthenearclippingplaneandthefar clipping plane. The
intersectionbetweenthepyramidandthe nearclipping planede�nes a bounded
2d areathatcanbethoughtof asthecomputerscreen,put into the3d world. The
far clipping planeis usedto limit thevisible region of theview-spaceto a closed
volume,which is usedin theprojectionstep.Thefour sideplanesof thepyramid,
along with the two clipping planes,de�ne a frustumshapedvolumecalled the
view frustumandonly geometryinsidethis frustumis deemedvisible andwill be
projectedonto thescreen.Referto �gure A.2 for a visualizationof the viewing
frustumandtheclippingplanes.

Far clipping plane

Near clipping plane

View frustum

FigureA.2: Theview frustum

Usinga projectionmatrix thegeometryis projectedfrom view spaceontothe
nearclippingplane,whichhastheeffectof scalingdown pointsthatarefaraway.
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This is theway perspective is introducedto theimage.Becauseit is possiblefor
two different3dpointsin theview frustumto beprojectedontothesame2dpoint
on thenearclipping plane,theprojectionmatrix alsoscalesthe z componentof
thepoint to bewithin therange[0..1]. A valueof zeromeansthatthepoint is on
thenearclippingplane,andavalueof onemeansthatit on thefarclippingplane.
Thisscaleddepthvaluecanthenbeusedin thez-buffer testasdescribedabove. To
havea �x edcoordinaterangeof theprojectedpoints,independentof theFOV, the
projectionmatrix alsoscalesthe x andy componentsof the pointsto lie within
the range[-1..1], with the point (0,0) beingat the centerof the screen. So the
total resultof theprojectionmatrix is to convert theview frustuminto a bounded
cubicspacecalledprojected-spacewith a �x edcoordinaterangeasshown in a2d
top-down view in FigureA.3.

p1

p2
p3

p4

near plane

far plane

camera

(-1,0) (1,0)

(1,1)(-1,1)

camera

p1

p2 p3

p4

Projection Matrix

FigureA.3: Projected-space

The �nal conversion from projected-spaceinto the actual color buffer is
achieved by simply discardingthe z componentof the projected-spacecoordi-
nateandthenscalingthe resulting2d coordinateto the actualresolutionof the
colorbuffer - for example1024x768pixels.

To summarize:the meshesor objectsin a 3d sceneare initially de�ned in
theirown localspaces,andbeforethey areactuallyshown onthecomputerscreen
they go througha chainof spacetransitions,asshown in �gure A.4. In practice
all thesetransitionshappenin a singlestep,asthe natureof matricesallows us
to concatenatetheworld, view andprojectionmatrix into onesinglematrix that
takesavertex all theway from object-spaceinto projected-space.

Oncethegeometryhasbeenprojectedontothescreen,eachprojectedtriangle
is thenrasterizedinto fragmentsandacoloris calculatedfor eachfragment,which
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FigureA.4: Chainof transitions

is then�nally written into the correspondingpixel in the color buffer. Onceall
fragmentsof all triangleshave beenrasterizedinto thecolor buffer the imageis
completedandcanbeshown on thescreen.

Pipeline
Theentiregraphicspipelinecanbevisualizedasaseriesof steps,eachstepbeing
representedby aboxasshown in �gure A.5.

Application Vertex process Rasterizer Pixel Process
Framebuffer
blending

FigureA.5: Thegraphicspipeline

Eachstepis completelyself-containedanddependsonly on its input. There-
fore,if wewantedwecouldreplaceoneor moreof theboxeswith ourowncustom
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components.As longastheoutputof ournew componentsis valid asinput to the
next box in thechaineverythingwould still work asit should.Previousgraphics
cardsdid notsupportcustomcomponentsandoperatedsolelythroughaso-called
�xed functionpipelinewherethegraphicsAPIs only allowedtheprogrammerto
setcertain�x ed parameterssuchasthe differentmatrices,lights, materialsetc.
The actualstepsof processingthe verticesandshadingthe fragmentswerethus
totally de�ned by thoseparameters,asdescribedabove.

However, onnewergraphicscardsit is now possibleto install customcompo-
nentsfor thevertex andfragmentprocessingstepandthis givestheprogrammer
the power to implementadvancedvertex transitionsand fragmentshadingpro-
grams,which is necessaryfor advancedgraphicseffectssuchasour implementa-
tion of soft shadows.

The customcomponentsarecalledvertex shaders andpixel shaders andare
smallprogramsthatareexecutedoncepervertex or pixel respectively. Theinput
to a vertex shaderis the datafor a singlevertex of the meshwhich is currently
beingrendered,asspeci�ed by the applicationprogrammer. This will typically
consistof a positionin object-space,a vertex normal,a diffusecolor andoneor
moresetsof texture coordinatesbut this isn't a requirement- the input canbe
anything that �ts into a valid vertex format. As a positionin projected-spaceis
a crucial input to the rasterizerfor it to be ableto draw the trianglesthis is also
a requiredoutputfrom any vertex shader. In additionto this position,thevertex
shadercanalsooutputotherthingsthatarecomputedon aper-vertex basis.

The output from the vertex shaderis, as explainedabove, the input to the
rasterizercomponent,which will usethe input positionsto scanlineconvert the
triangleinto individualfragments.Therasterizerwill alsodoalinearinterpolation
of all additionalinput valuesover the trianglesurface,andfor eachpixel it will
call thepixel shaderwith theinterpolatedvaluesasinput.

Thepixel shaderwill then,basedon the input, calculatea �nal color for the
fragmentandoutput it to the frame-buffer component,which will thenblendit
into thecolorbuffer. Thepixel shadercanuseanumberof arithmeticinstructions
to docalculationson theinput valuesaswell assampleoneor moretexturemaps
for usein its computations- but in theendit mustoutputat leastonecolor, since
thatis requiredasinput to theframe-buffer component.

Both thevertex shaderandpixel shadercomponenthaveanadditionalwayof
gettinginput, namelythrougha constantstorewheretheapplicationcanupload
settingsthatareconstantfor all pixelsor verticesin a particularframe.Thestore
consistsof a numberof 4d vectorswith 32 bit �oat componentsandthe sizeof
the storedependson the hardware- but it is typically not very large4. Constant
parametersincludethematricesdiscussedabove: theworld matrix, view matrix

4Currenthardwarehasa constantstoresizebetween128and256slots.
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andprojectionmatrix,aswell assettingsfor materialsandlights. All thesethings
mustbeuploadedmanuallyto theconstantstoreby theapplicationprogrammer.
FigureA.6 summarizestheinputsto two shadercomponents.

pos

normal

tex
coords

color

Vertex stream Vertex shader Pixel shaderRasterizer

Constant store

FigureA.6: Theshaderinputs

A.3 Vertex and pixel shaders

Theintroductionof vertex andpixel shadersgivestheprogrammermuchgreater
expressivepower thantheprevious�x edfunctionpipeline.Shadersare,however,
still a very youngtechnologywith several severelimitations. An understanding
of theselimitationsis necssaryto beableto usethemproperly.

Shaderinstructions
A standardinstructionsetfor shadershasnot yet beenestablished.With almost
everynew generationof graphicscards,new instructionsareintroducedthateither
expandon thecorefunctionalityor exposenew featuresin thehardware.As a re-
sult bothvertex andpixel shadersexist in many differentversions,andwhile they
areall backwardscompatibleit still meansthat shaderswritten for f.ex. ps2.05

cannotberun on hardwarethatonly supportanolderpro�le. This makesit cum-
bersometo write softwarethatbothutilizes the latestfeaturesand runson older
hardware. Either a shaderis written usingthe lowestpossibleversion(possibly
in asuboptimalway for thenewestcards)or multipleversionsof thesameshader
arewritten,onefor eachhardwarepro�le thatis to besupported.

5It is commonnotationto labelthedifferentversionsof shaderswith thepre�x 'vs' or 'ps' for
vertex shadersandpixel shadersrespectively, followedby theversionnumber.
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Anotherlimitation in currentshaderpro�les is thatthereis a maximumnum-
berof instructionslotsavailablefor eachshader. For vs2.0thelimit is 256arith-
metic instructions,and for ps2.0the limit is 64 arithmetic instructionsand 32
texture instructions. Also, sincethereis no true branchingor looping in ps2.0
or vs2.0,loopsmustbe unrolledwith eachiterationtaking up a certainamount
of the availableinstructionslots. With this in mind it becomesclearthat heavy
optimizationis oftenrequiredto keepashaderwithin its instructionlimit.

In DirectX6, theshadersareprogrammedthroughanassembly-likeAPI. This
API consistsof anumberof one-slotinstructionsandsomemacrosthateachtake
up multiple instructionslots. An exampleof a macrois the 'm4x4' instruction,
which transformsa vectorby a 4x4 matrix. This macrotakesup four instruction
slotssinceit canbe implementedthroughfour one-slotdot productinstructions.
However thereis notadirectmappingbetweenashaderin its assemblyform and
theactualimplementationon thehardware,andthemacrosarenot expandedby
the runtimesystem. Instead,the shaderis sentasa streamof tokensto a back-
end compiler, implementedin the graphicsdriver. This compilercompilesthe
shaderinto native instructions,availableon theparticulargraphicscard,andruns
it throughan optimizerto do optimal registerandinstructionscheduling.If the
hardware hasnative supportfor a macro, it will be able to executeit as it is,
otherwiseit will expandit into aseriesof simplerinstructions.

The graphicsdriver usuallydoesa good job of optimizing the shaders,and
withoutverydetailedknowledgeof theunderlyinghardwarethereis notmuchone
cando to facilitatethe process,exceptkeepingthe shadersasshortaspossible.
Oneway of reducingtheinstructioncountis to exploit thefact that theGPUis a
vectorbasedprocessor, meaningthatall instructionsoperateson 4d vectorswith
32 bit �oat components.This is importantto keepin mind whenwriting shaders,
becauseoftenmultiplescalaroperationscanbepackedtogetherin asinglevector
operation,if theoperandsareproperlyarrangedin twovectors.Asshown in �gure
A.7 it is possibleto addfour setsof two scalarvaluestogetherin a single'add'
assemblyinstruction.

Usinga techniquecalledswizzlingit is possibleto accesstheindividualcom-
ponentsof eachregister. Swizzlingrefersto theability to copy any sourceregister
componentto any temporaryregistercomponent,andit is donebeforetheinstruc-
tion that usesswizzling is run. An exampleof an instructionusingswizzling is
“mov r1, r0.xxzy”, which hastheeffect of �rst creatinga temporaryregisterwith
both thex andy componentsetto r0.x, thez componentto r0.z andthew com-
ponentto r0.y - andthenassigningthis registerto r1. Usingexplicit swizzlingon
bothsourceanddestinationregistersis goodpractice,sinceit providesoptimiza-
tion hintsto thegraphicsdriver. Thusit might beableto optimizethenativecode

6We haveusedDirectX 9.0b.
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FigureA.7: Vectorizationof operations

for aninstructionlike theleft onein �gure A.7 if it is explicitly told thatonly the
x componentsof the vectorsneedsto be addedtogether. See[Rig02] for more
informationonhow shadersoperateon moderngraphicshardware.

Working with shaders
Althoughtheperformanceof currentgraphicscardsseemsimpressiveat �rst sight
it is easyto write shadersthatpushthemto the limit. It is especiallyeasyto hit
theinstructionlimit describedaboveandoptimizationof shadercodeis therefore
very important. As pixel shadersarerun many timesmorethanvertex shaders
they shouldbe the main target for optimizationsand a good way to start is to
make surethatnothingis calculatedon a per-pixel basisthat is actuallyconstant
for all pixelsin theframe.Suchvaluesshouldbeuploadedto theshaderthrough
theconstantregisters.Furthermorenothingthatis constant,or canbeinterpolated
linearly over an entire triangle shouldbe calculatedin the pixel shader, as it is
bettercalculatedon a per-vertex basisin thevertex shaderandtheninterpolated
by the rasterizer. Examplesof valuesthat areusuallycomputedon a per-vertex
basisandtheninterpolatedover thetrianglearetexturecoordinatesanddiffuseor
specularcolors.

Anotherthing that is importantto understandwhenworking with shadersis
that vertex andpixel shaderswork purely on the datathey areprovided with as
input andthat they cannotinteractin any way with otherverticesor pixels. For
exampleit is not possiblefor a vertex shaderto checkthepositionof a neighbor
vertex andusethis informationin its own calculations.On a similar note,a pixel
shadercannotlook up thecolor of anotherpixel andusethis to decideits output.
Theseareunderstandableandreasonablelimitations,but they still put a limit on
whatkind of algorithmsthatcanbeimplementedonthehardwarethroughshaders.
Skinnedanimationf.ex., whereeachvertex is animatedusingoneor moretrans-
formationmatriceswithout looking at its neighbors,is possibleto implementin
a shaderwhile cloth animationcurrentlyisn't becauseit works througha spring
systemthatrelieson theability to moveneighborvertices.
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High-level shaderprogramming
Traditionallyshadershavebeenwrittenin anassembly-likelanguage,asdescribed
above. As a result,writing shaderswasacumbersomeandslow processwith lots
of debuggingrequiredto make the shaderswork properly. RecentlyMicrosoft
andnVidia hascooperatedin developinga high-level languagefor programming
shaders,makingshaderdevelopmentmucheasierfor theapplicationprogrammer.
nVidia hasdubbedtheir language'CG', which is shortfor 'C for Graphics'and
Microsoft hasdubbedtheir version'HLSL' for 'High Level ShadingLanguage'.
This hasled to a greatdealof confusionamongdevelopers,but in truth the two
languagesarecloseto identicalandthetwo compilerscancompilethesamehigh-
level shadercode.Thedifferencesmainly lie in theruntimesystemsprovidedto
managetheshaders.To avoid furtherconfusionwewill referto high-level shader
codein generalas'CG shaders'for theremainderof this thesis.All theshaders
wehavewrittenfor oursoftshadowsimplementationhavebeenwrittenusingthis
high-level language.
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Appendix B

Screen-shots
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FigureB.1: Cosybackyardin thecity
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FigureB.2: Examininga box
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FigureB.3: In thelibrary
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FigureB.4: Pirates'treasureon asmall island
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FigureB.5: In themine

111



FigureB.6: Benchmarkscenes
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FigureB.7: Single-passvs. multi-passshadows
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